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Surface Instabilities in Cracks
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The surface of a propagating crack is shown to be morphologically unstable because of the
nonhydrostatic stresses near the surface (Asaro-Tiller-Grinfeld instability). We find that the energy
of a wavy crack becomes smaller than the energy of a straight crack if the crack length is a few times
larger than the Griffith length. The local dispersion relation is derived assuming that the instability
develops via mass transport by surface diffusion. We also argue that the widely used condition of
the vanishing ofKy;, the stress-intensity factor of the sliding mode, appears in a natural way in our
description as an effective boundary condition at the tip of the crack. [S0031-9007(98)07834-X]

PACS numbers: 46.30.Nz, 62.20.Mk, 81.40.Np

The uniform motion of a straight crack is well under- tangential stress, which deflects the crack away from a
stood [1]. Experiments on the fracture of bulk specimensstraight motion, exceeds the normal stress on the fracture
however, show that the crack surfaces are often rougburface throughout the tip region at all nonzero velocities.
[2]. Some of these results are interpreted in the frameThis instability is very sensitive to tiny details of the
work of models of cracks propagating in heterogeneousohesive-zone model.
media. The other possibility for the roughening of the In all of these descriptions, a crack surface is viewed
crack surfaces is the instability of the straight motion of theas the trace left behind by the crack tip as it traverses
crack tip. Recent experiments on the fracture of thin platethe sample. All modes related to the further surface
[3] clearly established that many puzzling phenomena irdeformations due to a transfer of matter are assumed to
brittle fracture dynamics are related to an oscillatory instabe frozen. The main purpose of this Letter is to describe
bility at velocities appreciably below the Rayleigh speedthe instabilities of the crack surface related to these so
Vg. Beyond a critical velocity the crack dynamics changefar missing degrees of freedom. We will find that the
dramatically. At that point, the mean acceleration of thesurfaces of a propagating crack undergo an Asaro-Tiller-
crack drops, the crack velocity starts to oscillate, and a parinfeld (ATG) instability [8,9] of purely macroscopic
tern correlated with the velocity oscillation is created onorigin.
the fracture surface. These results stimulated many recent Asaro and Tiller [8] and later Grinfeld [9] brought
investigations (see, for example, Ref. [4]) but the instabil-out the idea that the surface of a solid which is subject
ity is not well understood yet. to a uniaxial stress (i.e., whesmy = o, — oy, # 0) is

There were several attempts in literature to investigatenorphologically unstable. This instability has an elastic
the stability of the propagating cracks. The linear sta-origin: a corrugated surface leads to a lower elastic
bility analysis of the quasistatic crack subject to mode lenergy than a flat one. Note that the instability implies a
(opening-mode) loading has been performed by Cotteretransfer of matter, either from a liquid phase or through
and Rice [5] with subsequent refinement by Adda-Bedissurface diffusion. The interface displacement is due
and Ben Amar [6]. They employ the Griffith theory and to redistribution of material, not due to elastic strain.
the so-called principle of local symmetry, i.e., the condi-Surface energy prevents short-scale deformations. The
tion that the mode Il (sliding-mode) stress-intensity factorchemical potential of such a solid near the surface can
K11 vanishes on the tip of the crack. They found that thebe written as [10,11]
straight motion of the crack becomes unstable if the tan- X )
gential loading exceeds a critical value. _ — v _ 2

A fully dynamical model, including the microscopic  “* ~ Us|:f50 MY> (77 = o)™ + QK}' @)
description of the cohesive zone of the crack tip, has
been discussed by Ching, Langer, and Nakanishi [7]. Thélere, v, is the atomic volume of the solid phasg;,
cohesive force in the neighborhood of the tip providess the free energy density for a hydrostatic situation;
a fracture energy and a mechanism for regularizing thex is the surface energyK is the curvature of the
stress singularity. The use of such a model removes thiaterface (counted positive for a convex solidy;; is
need to speculate about a principle of local symmetry. Irthe stress tensor; and 7 are subscripts referring to the
addition to the results of Refs. [5,6], they found a strongnormal and the tangent to the interfageand E are the
microscopic instability even for very low crack velocities. Poisson and Young coefficients. For a small perturbation
The main reason for such a strong instability is that theof the interface( y(x, ) = Y, exdikx + wt]), the shape
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2P%(1 = v?) L?
= DkQ[T ('k' - ﬁ) - kz}-

(6)
. . I . . This local dispersion relation is valid for relatively short-
If the solid is in contact with a liquid which provides scale deformationskr > 1, wherer = (L — x) is the

a reservoir of atoms, the instability manifests itself asdistance from the tip
a melting-crystallization process; the normal velocity of The instability oc.curs at distances > ro ~ Lo X
the interface is proportional to the difference of chemicaI(L/L )1/3 and atk, ~ 1/L¢. Here, we havg intro%luced
potentials between the solid and liquid. If the surface i§, "% - "~ e Iengtﬁ: '

the interface between the solid and vacuum, the instability '
develops via surface diffusion; the normal velocity is 2Ea

proportional to the Laplacian of the chemical potential Lo = (1 — v2)P2’ (7)

of the' So"d pha_se. In the latter case, this leads to therhe local dispersion relation (6) quantitatively describes
following dispersion relation: the instability ifZ > L

o Dk2|:203(1 — 2 " k2:| Noziéres [11] concluded from a weakly nonlinear analy-

dependent part of the chemical potential is [9]

[2(1 — )}
N = US - 4

Z |kl — akz}y(x,t)- )

ok (3)  sis of the customary ATG instability that the bifurcation
from the flat surface into the corrugated one is subcritical:
whereD is proportional to the surface diffusivity. Here, the first nonlinearity reinforces the instability. This result
elasticity plays a destabilizing role and| reflects its points to the fact that amplitude expansions are inadequate
nonlocal properties. and, therefore, one has to perform a fully nonlinear analysis
Let us discuss a two-dimensional crack subject to modé order to describe the subsequent development of the in-
| (opening-mode) loading at infinity perpendicular to thestability. The numerical nonlinear analysis of the custom-
crack: o, = P. This crack is stable in the sense of ary ATG instability [13,14] shows that even close to the
Refs. [5,6]. However, the surface of the crack behind thénstability threshold deep cracklike grooves form. These
moving tip becomes unstable. The crucial observation igrooves, pointing into the solid, sharpen and accelerate as
that at the crack surface,, = 0 but o, is not. Thus, they deepen. Therefore, a complicated pattern should de-
we can expect the development of the ATG instabilityvelop behind the moving tip.
(we note that hydrostatic loading is not favorable for the In order to find the critical length of the straight crack
ATG instability). However, the application of this theory at which the crack undergoes the ATG instability we must
to the surface of the crack requires some comments ar@P beyond the local approximation which has been used
modifications. We are not in a homogeneous situatiors0 far. We have to calculate the change of the energy up
due to the presence of the finite crack. The stress fieltP the second order with respect to the perturbation of the
is singular and should be found from the solution of thecenter liney(x) and to find the critical length when this

corresponding crack problem. energy change becomes negative for the first time. The
In a quasistatic case, which we discuss first, the streg®ost trivial contribution is due to the surface energy
field in the close vicinity of the crack surface is given by L (y/)?
(see, for example, Ref. [12]) Us = 2a ]_L T dx, (8)
o = —P[1 — 2L%y/(L* — x*)*/7], which is, of course, always positive and stabilizes the
oy =0 and o, = 0. (4)  straight crack. The other stabilizing contribution is of

elastic origin and can be read off directly from Eq. (5):
Here, we assume that the straight crack of the ledth

L
is located at-L < x < L andy/(L — x) < 1. Uy = —2/ Obs de
Because of the presence of the singular stress field, L vy 2
there is an additional elastic contribution to the chemical fL 4 4P%(1 — v?)L? y? ©)
H = X 5 aais ~ -
potential [Eq. (2)] on the surface of the corrugated crack L TE(? — x2)32 2
yo): The factors 2 in Egs. (8) and (9) come from the fact
2u,P%(1 — v?)L? that the crack has two surfaces. Assuming that 0
Ops = = E(L2 — x2p2 V- (5)  atx = +L and integrating by part, we can remove the

singularities in Eq. (9):
This stabilizingk-independent term plays the role of effec- 2P2(1 — 1?) (L
tive “gravity” (in terms of the customary ATG instability) Uels = ——f dx (>)'VL? — x2. (10)
but it depends upon the distance from the tip. Combin- E -L
ing together Egs. (2) and (5), we obtain the modified ATGThe destabilizing contribution to the elastic energy which
spectrum: corresponds to the ATG instability in our finite length
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crack geometry can be calculated as follows. The total
shear stress on the crack surface must be zero:

| 0.3t
om =0l + Py =0, (11)

where a-f,l) is the first order correction to the stress field

which must be added to satisfy this boundary condition.
Associated with this field the mode Il (sliding-mode)
stress-intensity factok;; was calculated in Refs. [5,6]: =

P L fL + x
Ky = —— d ! 12 +
11 L fL X I xy (12) 0.1

The corresponding elastic ener@y,;, can be found by /\

0.2+

using the well-known relation established by Irwin [15]:

0.0
u 2(1 — 2
_ aUel _ ( v ) KI21 ] (13) \/

oL E

We note that another contribution t&;;, which is
just y'(L)K;/2, has been already taken into account by 0.1 ——

Egs. (5) and (9) (herek; is mode | stress-intensity factor

for the straight crackk; = P/7L). KL

The total energy from Egs. (8), (10), and (13), FIG. 1. The reduced energy versuskL for three different

U="U; + Ueys + Uely, (14)  values of the length of the crack; from the bottom to the top

. . . . L =10Lg, L = 5.85Lg, L = 4Lg. The crack goes unstable
is a complicated functional of the perturbatiofx) and  nearkl = 4 whereF < 0.

depends also on the length of the crack. This expression

for the energy of the corrugated crack is consistent withLg is the Griffith length [Eq. (7)]. The perturbations

the result of Ref. [16]. of the form sitn7x/L) give the bifurcation threshold
The optimal perturbation corresponds to the minimumL, = 11L¢ forn = 2.

of this functional and the threshold of the instability In calculating the energy of the corrugated crack, we

corresponds to the conditiotv,,;, = 0. We note that have discussed only the perturbation of the center line.

the optimal perturbation corresponds to the condition ofThis assumes that both surfaces of the crack are perturbed

constant chemical potential, along the crack surfaces. in the same way such that the crack can be still described
In order to estimate the critical length, we use theas an ideal mathematical cut. However, the development

variational procedure with a simple representation of theof the instability in the nonlinear regime leads to the

perturbation, formation of the deep grooves pointed into the solid

[13,14]. Thus, the corrugation of the opposite surfaces

of the crack becomes incoherent.

Then all integrals can be performed analytically, and we |n the quasistatic approximation used so far we have

y(x) = Y;(coskx — COSkL).

find for Eq. (14) assumed a slow motion of the crack tip. In the framework
7P2(1 — v?) ) ) of a thermodynamical description we find pure energetic
Us—F (kL)“F(kL)Y}, (15)  reasons for the instability of the crack surfaces. Including

) ) surface diffusion as a mechanism for the mass transport,
where the functionF(z) can be expressed in terms of \ye find the local dispersion relation (6) which describes
Bessel functiond,: the initial stage of the development of the instability.

F(z) = (Lg/2L)[1 — sin2z/2z] — [J3(z) + J(2)] A Letus olliseus_s dynamical asgectiof the :FSthilitlz when
the tip velocity is not assumed to be small. It is known
+ - + . . S

211(22) = 211(z) cosz + Jo(2)1(2))/z from fracture dynamics [1] that the stress distribution on

(16)  the crack surface remains qualitatively the same as in the

For kL > 1, this energy is consistent with the spectrumStat'C_Case apart from spmefactors which c_iepe_nd on the tip
(3) of the customary ATG instability. FatL < 1, the velocity V;. Therefore, instead qf the quasistatic spectrum
result is in agreement with an exact solution of the(6) We can write the spectrum in the laboratory frame of

circular arc crack (see, for example, Ref. [5]). A straight€ference as

crack is stable ifU > 0. This is always the case for | 4 g L? )
small L. The bifurcation threshold correspondsifo= 0 w = Dk*| —— (mlkl - m) — k7,
and dU/dk = 0 (see Fig. 1). Thus, the straight crack mha o

becomes unstable dt. = 6L and k.Ls = 0.7, where a7
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development compared to the fast tip motion. Indeed,

the most unstable mode corresponds to the value of

¢i/Lg and w = w, ~ Dq{/LE. In the moving frame
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