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The surface of a propagating crack is shown to be morphologically unstable because o
nonhydrostatic stresses near the surface (Asaro-Tiller-Grinfeld instability). We find that the en
of a wavy crack becomes smaller than the energy of a straight crack if the crack length is a few t
larger than the Griffith length. The local dispersion relation is derived assuming that the instab
develops via mass transport by surface diffusion. We also argue that the widely used conditio
the vanishing ofKII, the stress-intensity factor of the sliding mode, appears in a natural way in
description as an effective boundary condition at the tip of the crack. [S0031-9007(98)07834-X]
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The uniform motion of a straight crack is well under
stood [1]. Experiments on the fracture of bulk specimen
however, show that the crack surfaces are often rou
[2]. Some of these results are interpreted in the fram
work of models of cracks propagating in heterogeneo
media. The other possibility for the roughening of th
crack surfaces is the instability of the straight motion of th
crack tip. Recent experiments on the fracture of thin plat
[3] clearly established that many puzzling phenomena
brittle fracture dynamics are related to an oscillatory inst
bility at velocities appreciably below the Rayleigh spee
VR . Beyond a critical velocity the crack dynamics chang
dramatically. At that point, the mean acceleration of th
crack drops, the crack velocity starts to oscillate, and a p
tern correlated with the velocity oscillation is created o
the fracture surface. These results stimulated many rec
investigations (see, for example, Ref. [4]) but the instab
ity is not well understood yet.

There were several attempts in literature to investiga
the stability of the propagating cracks. The linear st
bility analysis of the quasistatic crack subject to mode
(opening-mode) loading has been performed by Cotter
and Rice [5] with subsequent refinement by Adda-Bed
and Ben Amar [6]. They employ the Griffith theory an
the so-called principle of local symmetry, i.e., the cond
tion that the mode II (sliding-mode) stress-intensity fact
KII vanishes on the tip of the crack. They found that th
straight motion of the crack becomes unstable if the ta
gential loading exceeds a critical value.

A fully dynamical model, including the microscopic
description of the cohesive zone of the crack tip, h
been discussed by Ching, Langer, and Nakanishi [7]. T
cohesive force in the neighborhood of the tip provide
a fracture energy and a mechanism for regularizing t
stress singularity. The use of such a model removes
need to speculate about a principle of local symmetry.
addition to the results of Refs. [5,6], they found a stron
microscopic instability even for very low crack velocities
The main reason for such a strong instability is that th
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tangential stress, which deflects the crack away from
straight motion, exceeds the normal stress on the fract
surface throughout the tip region at all nonzero velocitie
This instability is very sensitive to tiny details of the
cohesive-zone model.

In all of these descriptions, a crack surface is view
as the trace left behind by the crack tip as it travers
the sample. All modes related to the further surfa
deformations due to a transfer of matter are assumed
be frozen. The main purpose of this Letter is to descri
the instabilities of the crack surface related to these
far missing degrees of freedom. We will find that th
surfaces of a propagating crack undergo an Asaro-Till
Grinfeld (ATG) instability [8,9] of purely macroscopic
origin.

Asaro and Tiller [8] and later Grinfeld [9] brough
out the idea that the surface of a solid which is subje
to a uniaxial stress (i.e., whens0 ­ sxx 2 syy fi 0) is
morphologically unstable. This instability has an elast
origin: a corrugated surface leads to a lower elas
energy than a flat one. Note that the instability implies
transfer of matter, either from a liquid phase or throug
surface diffusion. The interface displacement is d
to redistribution of material, not due to elastic strai
Surface energy prevents short-scale deformations. T
chemical potential of such a solid near the surface c
be written as [10,11]

ms ­ ys

"
fs0 1

1 2 n2

2E
sstt 2 snnd2 1 aK

#
. (1)

Here, ys is the atomic volume of the solid phase;fs0
is the free energy density for a hydrostatic situatio
a is the surface energy;K is the curvature of the
interface (counted positive for a convex solid);sik is
the stress tensor;n and t are subscripts referring to the
normal and the tangent to the interface;n and E are the
Poisson and Young coefficients. For a small perturbati
of the interfacesss ysx, td ­ Yk expfikx 1 vtgddd, the shape
© 1998 The American Physical Society 5141
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dependent part of the chemical potential is [9]

ms ­ ys

"
2s1 2 n2ds2

0

E
jkj 2 ak2

#
ysx, td . (2)

If the solid is in contact with a liquid which provides
a reservoir of atoms, the instability manifests itself a
a melting-crystallization process; the normal velocity o
the interface is proportional to the difference of chemic
potentials between the solid and liquid. If the surface
the interface between the solid and vacuum, the instabil
develops via surface diffusion; the normal velocity i
proportional to the Laplacian of the chemical potentia
of the solid phase. In the latter case, this leads to t
following dispersion relation:

v ­ Dk2

"
2s

2
0s1 2 n2d

aE
jkj 2 k2

#
, (3)

whereD is proportional to the surface diffusivity. Here,
elasticity plays a destabilizing role andjkj reflects its
nonlocal properties.

Let us discuss a two-dimensional crack subject to mo
I (opening-mode) loading at infinity perpendicular to th
crack: s`

yy ­ P. This crack is stable in the sense o
Refs. [5,6]. However, the surface of the crack behind th
moving tip becomes unstable. The crucial observation
that at the crack surfacesnn ­ 0 but stt is not. Thus,
we can expect the development of the ATG instabilit
(we note that hydrostatic loading is not favorable for th
ATG instability). However, the application of this theory
to the surface of the crack requires some comments a
modifications. We are not in a homogeneous situatio
due to the presence of the finite crack. The stress fie
is singular and should be found from the solution of th
corresponding crack problem.

In a quasistatic case, which we discuss first, the stre
field in the close vicinity of the crack surface is given b
(see, for example, Ref. [12])

sxx ­ 2Pf1 2 2L2yysL2 2 x2d3y2g ,

syy ­ 0 and sxy ­ 0 .
(4)

Here, we assume that the straight crack of the length2L
is located at2L , x , L andyysL 2 xd ø 1.

Because of the presence of the singular stress fie
there is an additional elastic contribution to the chemic
potential [Eq. (2)] on the surface of the corrugated crac
ysxd:

dms ­ 2
2ysP2s1 2 n2dL2

EsL2 2 x2d3y2 y . (5)

This stabilizingk-independent term plays the role of effec
tive “gravity” (in terms of the customary ATG instability)
but it depends upon the distance from the tip. Combi
ing together Eqs. (2) and (5), we obtain the modified AT
spectrum:
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v ­ Dk2

"
2P2s1 2 n2d

aE

√
jkj 2

L2

sL2 2 x2d3y2

!
2 k2

#
.

(6)
This local dispersion relation is valid for relatively short
scale deformations,kr ¿ 1, where r ­ sL 2 xd is the
distance from the tip.

The instability occurs at distancesr . r0 , LG 3

sLyLGd1y3 and atkc , 1yLG. Here, we have introduced
the so-called Griffith length:

LG ­
2Ea

ps1 2 n2dP2 . (7)

The local dispersion relation (6) quantitatively describe
the instability ifL ¿ LG.

Noziéres [11] concluded from a weakly nonlinear anal
sis of the customary ATG instability that the bifurcatio
from the flat surface into the corrugated one is subcritic
the first nonlinearity reinforces the instability. This resu
points to the fact that amplitude expansions are inadequ
and, therefore, one has to perform a fully nonlinear analy
in order to describe the subsequent development of the
stability. The numerical nonlinear analysis of the custom
ary ATG instability [13,14] shows that even close to th
instability threshold deep cracklike grooves form. The
grooves, pointing into the solid, sharpen and accelerate
they deepen. Therefore, a complicated pattern should
velop behind the moving tip.

In order to find the critical length of the straight crac
at which the crack undergoes the ATG instability we mu
go beyond the local approximation which has been us
so far. We have to calculate the change of the energy
to the second order with respect to the perturbation of t
center lineysxd and to find the critical length when this
energy change becomes negative for the first time. T
most trivial contribution is due to the surface energy

Us ­ 2a
Z L

2L

sy0d2

2
dx , (8)

which is, of course, always positive and stabilizes th
straight crack. The other stabilizing contribution is o
elastic origin and can be read off directly from Eq. (5):

Uels ­ 22
Z L

2L

dms

ys

ysxd
2

dx

­
Z L

2L
dx

4P2s1 2 n2dL2

EsL2 2 x2d3y2

y2

2
. (9)

The factors 2 in Eqs. (8) and (9) come from the fa
that the crack has two surfaces. Assuming thaty ­ 0
at x ­ 6L and integrating by part, we can remove th
singularities in Eq. (9):

Uels ­ 2
2P2s1 2 n2d

E

Z L

2L
dx sy2d00

p
L2 2 x2 . (10)

The destabilizing contribution to the elastic energy whic
corresponds to the ATG instability in our finite length
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crack geometry can be calculated as follows. The to
shear stress on the crack surface must be zero:

stn ­ ss1d
tn 1 Py0 ­ 0 , (11)

wheres
s1d
ik is the first order correction to the stress fiel

which must be added to satisfy this boundary conditio
Associated with this field the mode II (sliding-mode
stress-intensity factorKII was calculated in Refs. [5,6]:

KII ­
P

p
pL

Z L

2L
dx

s
L 1 x
L 2 x

y0. (12)

The corresponding elastic energyUelu can be found by
using the well-known relation established by Irwin [15]:

2
≠Uelu

≠L
­

2s1 2 n2d
E

K2
II . (13)

We note that another contribution toKII, which is
just y0sLdKIy2, has been already taken into account b
Eqs. (5) and (9) (here,KI is mode I stress-intensity factor
for the straight crack,KI ­ P

p
pL).

The total energy from Eqs. (8), (10), and (13),

U ­ Us 1 Uels 1 Uelu , (14)

is a complicated functional of the perturbationysxd and
depends also on the length of the crack. This express
for the energy of the corrugated crack is consistent wi
the result of Ref. [16].

The optimal perturbation corresponds to the minimu
of this functional and the threshold of the instability
corresponds to the conditionUmin ­ 0. We note that
the optimal perturbation corresponds to the condition
constant chemical potentialms along the crack surfaces.

In order to estimate the critical length, we use th
variational procedure with a simple representation of th
perturbation,

ysxd ­ Ykscoskx 2 coskLd .

Then all integrals can be performed analytically, and w
find for Eq. (14)

U ­
pP2s1 2 n2d

E
skLd2FskLdY2

k , (15)

where the functionFszd can be expressed in terms o
Bessel functionsJm:

Fszd ­ sLGy2Ld f1 2 sin2zy2zg 2 fJ2
0 szd 1 J2

1 szdg
1 2fJ1s2zd 2 2J1szd cosz 1 J0szdJ1szdgyz .

(16)

For kL ¿ 1, this energy is consistent with the spectrum
(3) of the customary ATG instability. ForkL ø 1, the
result is in agreement with an exact solution of th
circular arc crack (see, for example, Ref. [5]). A straigh
crack is stable ifU . 0. This is always the case for
smallL. The bifurcation threshold corresponds toU ­ 0
and dUydk ­ 0 (see Fig. 1). Thus, the straight crack
becomes unstable atLc ø 6LG and kcLG ø 0.7, where
tal
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FIG. 1. The reduced energyF versuskL for three different
values of the length of the crack; from the bottom to the to
L ­ 10LG , L ­ 5.85LG, L ­ 4LG . The crack goes unstable
nearkL ­ 4 whereF , 0.

LG is the Griffith length [Eq. (7)]. The perturbations
of the form sinsnpxyLd give the bifurcation threshold
Lc ø 11LG for n ­ 2.

In calculating the energy of the corrugated crack, w
have discussed only the perturbation of the center lin
This assumes that both surfaces of the crack are perturb
in the same way such that the crack can be still describ
as an ideal mathematical cut. However, the developme
of the instability in the nonlinear regime leads to the
formation of the deep grooves pointed into the soli
[13,14]. Thus, the corrugation of the opposite surface
of the crack becomes incoherent.

In the quasistatic approximation used so far we hav
assumed a slow motion of the crack tip. In the framewor
of a thermodynamical description we find pure energet
reasons for the instability of the crack surfaces. Includin
surface diffusion as a mechanism for the mass transpo
we find the local dispersion relation (6) which describe
the initial stage of the development of the instability.

Let us discuss dynamical aspects of the instability whe
the tip velocity is not assumed to be small. It is known
from fracture dynamics [1] that the stress distribution o
the crack surface remains qualitatively the same as in t
static case apart from some factors which depend on the
velocityVt. Therefore, instead of the quasistatic spectrum
(6) we can write the spectrum in the laboratory frame o
reference as

v ­ Dk2

"
4

pLG

√
q1jkj 2

q2L2

sL2 2 x2d3y2

!
2 k2

#
,

(17)
5143



VOLUME 81, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 7 DECEMBER1998

n

t,

tt.

,

.

,

,

ys.

s.
where q1 and q2 are some functions ofVtyVR and the
Poisson ration.

We can expect that the linear instability described by t
local dispersion relation (17) should be only convective
the frame of reference of the moving tip due to its slo
development compared to the fast tip motion. Indee
the most unstable mode corresponds to the value ofk ,
q1yLG and v ­ vu , Dq4

1yL4
G . In the moving frame

of reference,v should be replaced bysv 2 iVtkd with
a convective contribution of the ordervc , q1VtyLG .
The ratiovuyvc , q3

1DysL3
GVtd is expected to be small

if the velocity Vt is of the order of the sound speed
This corresponds only to the convective instability (se
for example, Ref. [17]). According to the concept o
the convective instability, it means that tip motion i
insensitive to the development of the instability behind th
tip. However, the drastic acceleration of the instability an
the refining of the length scale in the nonlinear regim
[13,14] make still conceivable that eventually the ti
motion itself could be affected by the instability.

The pattern which develops on the surface of the ma
crack in the recent experiments on the microbranchi
instability [3] superficially looks similar to the pattern
predicted by the nonlinear ATG instability. However
the direct relevance of our results to these experiments
problematic because of the slow surface diffusion proce
compared to the fast tip motion.

The described instability has a purely macroscopic o
gin (compared to the microscopic tip instability predicte
in Ref. [7]) and it does not depend on details of the c
hesive or plastic zone. As it follows from our analysi
the instability should be more efficient in the case of slo
cracks.

Finally, we note that the widely used condition o
the vanishing of the totalKII, the sliding-mode, stress-
intensity factor, appears in a natural way in our descripti
as an effective boundary condition at the tip of the crac
Indeed, if the totalKII is not zero, there would be divergen
contributions to the chemical potential on the crack su
faces in the vicinity of the tips. These contributions hav
the opposite signs on the opposite surfaces. On the ot
hand, these pieces of the crack surface are separated
by a microscopic distance and the mass transport should
very fast on this scale. This leads to the natural bounda
condition that the chemical potentials on the opposite s
faces of the crack in the vicinity of the tip should be equa
In turn, it requires thatK tot

II ­ 0. We stress that even if
the surface diffusion process is slow on the macrosco
scale of the length of the crack it can be very efficient o
the microscopic scale in the vicinity of the crack tip.
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