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In 1989, Hsieh and Balluffi observed, for the first time, the de-faceting transition of a grain boundary in
aluminum and gold [1]. In this experiment, a sharply faceted boundary consisting of two symmetric
boundary phases that coexisted along edges changed reversibly upon heating to a curved and asymmetric
flat boundary. The (in)stability of the faceted boundary had long been anticipated, observed, and discussed
by Cahn [2]. According to this theory, faceted to a flat structural change is possible by means of a first
order phase transition originated at the orientation dependence of o, the boundary excess free energy. It is
difficult to explain the new experimental results in view of this theory in terms of two aspects: a. Hsieh
and Balluffi questioned the stability of the observed many-edge faceted phase as each edge increases the
system energy. They concluded that the faceted state was not fully equilibrated, and farther coarsening
may occur; b. The experiment demonstrated that the transition to a flat boundary occurs by a continuous

amplitude reduction. In view of this result, flattening may be interpreted as a second order phase
transition.

A decade ago, it was shown that the elastic strain field stabilizes the multi-edge faceied state of interfaces
[3]. In fact, the observation of a multi-edge structure manifests the important role played by elastic
deformation in this system. In the present work, we employ the Landau theory and show that the elastic
strain effect leads to flattening of a rough curved-modulated phase via a second order transition. In this
transition, the amplitude of the modulated boundary decreases continuously and vanishes with a fixed
periodicity at the critical temperature. In absence of experimental data at the critical point, we regard the
amplitude decrease with small variation of wavelength below the transition as an evidence for boundary
curving towards flattening. Indeed, the micrographs presented in Ref. [1] demonstrate that the facet
corner is curved and a modulated structure is built below transition. Therefore, we suggest that the faceted
phase undergoes two consequent transitionslto a flat phase, namely (Figure 1): a. a facet to a modulated
phase through a roughening transition. As a result of this transition, sharp edges are curved and extend at

the expense of facets; and, b. a modulated to flat phase transition at a critical temperature higher than the
roughening temperature.
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FIG. 1 The different states of grain boundary considered in this work. The "smooth" state
consists of two-phase symmetric boundary facets coexisting at edges. As in the case of the
smooth surface, perturbations in this state are localized to steps and grain boundary
dislocations. Above roughening transition, we consider a "modulated” boundary phase which
contains curved segments. This state is flattened through a second order phase transition
which is the subject of the present discussion.

Consider a bi-crystal with asymmetric tilt grain boundary in the xy plane where y is the tilt axis, along
which the bicrystal contains a reflection symmetry (y — —y). The excess free energy of a boundary with a
shape z(x,y) is

F* = [a(z,,z,)|1+2,2+2,%dxdy . (1)

.. . 1 . ~ . .
To lowest order expansion in z', F** is given by —2—(0Lmz'x2 +&,,2'?) where the stiffness coefficients

are & =(o1+22+2'?)"; . (&, =0, =0 due to symmetry). Instability is evident when a stiffness

coefficient is negative [4], in case of the above experiment: &, <0. We Fourier expand the grain
boundary free energy in its unstable modes (wavevectors parallel to the g, ), i.e.:

1 - 2
Fe° o Zauq2|zq| , ¥))
al [ax
and the instability combines growth of both the Fourier component of the boundary amplitude and its

wavelength. ‘However, higher order terms may (de)stabilize the boundary when & is (positive) small.
These terms are originated at possible curvature dependence of the boundary energy and the wavelength
dependence of the strain field energy. We discuss each one of these terms separately.

When o depends on the boundary curvature (hence, on z",), the linear term in z",,, i.e. Jz"xx z' dxdy is

noccible hv svmmetrv nevertheless it vanishes since the inteerand represents a total derivative. Therefore,
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where v is constant, assigned positive to maintain stability.

The elastic contribution to the bi-crystal energy is similar (to a multiple constant) to the one found for the
case of curved surface by Andreev {5]. According to this result, the elastic contribution is proportional to

—|g]lh(q) where h(g) is the Fourier transform of the boundary slope z, ( lh(q) = q2|zq|2):

F =%l . @

where B is some positive number combines Lame constants and the components of the surface stress tensor

[6]. Noteworthy is the minus sign in Eq.(4) which reflects a decrease of the system's free energy due to
elastic relaxation.

In order to recover the second order term of the frge energy expansion in the order parameter z,, we add
the different contributions of Eq.(2) through (4):

. |
= 3 oo’ -B v )
9x

It is seen that striction enhances the phase transition when &, is positive (yet small). Figure 2 plots the

function in the bracket of Eq.(5) , g(q), at the critical temperature, T, for which g vanishes and obtains a
local minimum at a finite wavelength, q =q,.

g(q)

FIG. 2 A plot of the function

1.
8@ =58,9" - Blaf’ +vq"* at
the critical temperature.

q 3
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We now expand the free energy near q, when approaching T:

Fy=2 Y [a(T-To) +b(q - g lz] ©)
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z‘lo

F= %a(T ~Tolz, [ +Claoles| Q)

where the third order term vanishes by translation symmetry of the flat phase (A three-vector star can not

be formed with aid of the two vectors § =+q,X), and expansion of Eq.(1) in z', yields C < q'. Eq. ()
indicates a modulated-flat state second order phase transition. On approaching the critical temperature, the

order parameter vanishes as IT—TC|"2. At the critical temperature, the transition occurs at a fixed

wavelength q,.

In conclusion, an unwieldy problem combining the dependence of the bi-crystal free energy on grain
boundary orientation, curvature and elastic strain field, reduced to a simple problem in the Landau
representation. To its well recognized limitations (e.g. Ginzburg-Levanyuk criteria for validity), this
representation makes the prediction of the flattening transition possible. This transition may qualitatively
explain some of the experimental observations mentioned above, including the possible dependence of this
transition. on additional thermodynamic variables, such as the grain boundary solute atom concentration
[7,8]. Farther application of the present theory requires refined experimental data, most importantly, the

investigation of the boundary state at a temperature close to T.. The application to the rough surface is
obvious, and may open a door for future study.
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