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It is pointed out that in first-order phase transitions nucleation stops
when the supersaturation decreases by a small amount. A simple quan-
titative description of the next stage of the kinetics of the transition —
the growth stage — is proposed. This stage lasts much longer than the
nucleation stage, and during practically the entire duration of this stage
all nuclei have virtually the same size and the number of nuclei is
constant, and the main drop in supersaturation occurs here. © 1996
American Institute of Physics. [S0021-3640(96)01313-8]
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Two stages are distinguished in the kinetics of first-order phase transitions — nucle-
ation and coalescence (see, for example, Ref. 1), corresponding to the initial and final (in
time) asymptotic solutions of the nonlinear equations governing the size distribution
function of the nuclei of the new phase. The general solution cannot be obtained, but a
quite complicated analysis of the equations led Maksimov and Mikhailov? to the conclu-
sion that there exists a special intermediate stage — the growth stage. The main distinc-
tion of this stage is that the number of nuclei is almost constant. It is conjectured that the
growth stage, which “‘joins’’ the limiting solutions, develops at times when the super-
saturation has fallen off by an amount of the order of the initial supersaturation. In the
present Letter, it is pointed out that this is not so ~— the probability of the appearance of
new nuclei must be neglected much earlier, when the degree of supersaturation has
decreased only by a small amount. This substantially simplifies the problem: It is found
that practically all nuclei possess the same size during virtually the entire growth stage.

The rate of nucleation s is determined mainly by the exponential exp(—U/T) (in the
present work, we shall employ the notation and concepts introduced in Ref. 1). Since it
makes sense to discuss only the limit of small supersaturations, when U(a.)>T, as the
supersaturation decreases and the critical size a, of the nuclei correspondingly increases,
the process producing new nuclei switches off exponentially when the change 6U in the
formation energy of critical nuclei exceeds the temperature, i.e. (see Ref. 1),
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As we shall see below, the change §A in the supersaturation is quite small. Its time
dependence follows from the law of conservation of the particle number:
SA(1)=—q(1), where ¢(¢) is the number of particles which have precipitated out of the
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solution into the nuclei as determined by the well-known size distribution function
f(a) of the nuclei at the nucleation stage (see Eq. (99.8) in Ref. 1):
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At this moment in time, most of the particles that have precipitated out of the
solution are located in nuclei whose radii are large compared with the critical radius. The

integral (2) for a>a, can be easily calculated, using the fact that it converges exponen-
tially for large sizes. Expanding the integrand near the lower limit, we obtain
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The linear behavior of the distribution function (3) is correct for sizes much greater than
the critical size, but, evidently, smaller than the maximum radius a,, of the nuclei which
arose first after the supersaturation was ‘‘switched on.”’ For our purposes, it is sufficient
to assume that the distribution function is given by expression (3) right up to a=a,, and
equals zero for large sizes. The rate of growth of the transcritical nucleus equals
2aDv'%ch {1 1
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(see the problem in Sec. 99 of Ref. 1). If nucleation stage lasts for a time t,, then for
a>a_ we find from Eq. (4)

al=2Dv'At,. (5)
The total number of particles which have precipitated out of the solution into the nuclei
equals
47 s
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Therefore, substituting expression (6) into condition (1) and taking account of Eq. (5), we
find the time 7,

to~ exp(2U/5T), )]

after which nucleation should be neglected, but there are still no reason for coalescence
to occur, and the transcritical nuclei will continue to grow with their number N remaining
constant:

N=sty~ exp(—3U/5T). 8)

. We note here that if the nucleation stage (i.e., thermally activated ‘‘passage’’ of the
nuclei through the critical radius) does not occur at all in the system on account of the
appearance of nuclei at impurities, the kinetics of the transition starts immediately with
the growth stage. Then N equals the number of impurities — the effective condensation
centers.

The average size of the transcritical nuclei at the stage being considered is
(a)>a,. At the start of the growth stage, the decrease in the supersaturation can still be
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neglected when determining the growth rate of the nuclei. Then, from Eq. (4) we obtain
for the time dependence of the radius of nuclei which are appreciably larger than the
critical size

a*(t)=2Dv't+a?(0), )
and therefore after a time which is short compared with the duration of the entire growth

stage but longer than the duration of the nucleation stage, the average size of the nuclei
will greatly exceed the characteristic width of the distribution function

da=a2/(a). (10)

Therefore the description of the further growth after this initial growth stage simplifies
substantially, since it can be assumed that all nuclei have the same size {(a). The total
number of particles in the nuclei in this case equals

47(a)’
= TN, (11)
and the growth of the nuclei is determined by the equation
1 ; €
== 1—x e (12)
where )
_A{a) 3 b? U\% _ag 3v'A\1B 1
T Thven \T) o =% bl (122)

The approximation of the distribution function by a 8-function will become inapplicable
when at a time ¢,>¢,, as the nuclei grow, the supersaturation decreases to where the
critical size reaches (a). The supersaturation then equals
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Up to this time the growth of the nuclei is governed by the expression
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Here the last term ~¢€ in Eq. (12) was dropped in the calculation. This term could
become important as the critical radius approaches the average radius, but the breakdown
of the &-function approximation of the distribution function turns out to be more impor-
tant. From Eq. (14), taking account of the cutoff of the logarithmic divergence as
I-x—0 at a value equal to the relative width of the distribution function
dal{a)~(a,/{a))?, we find
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At the moment ¢, when the ‘“‘8-function’’ no longer works (i.e., when the rate of
change of the average size (a) equals zero) (a)=a,. We note that the state in which all
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nuclei have the same radius — equal to the critical radius — is an exact (but unstable)
solution of the kinetic equations [Eqs. (100.4) in Ref. 1]. Since, however, the distribution
function has a finite width, the nuclei which are larger than the critical size continue to
grow and smaller nuclei start to dissolve, i.e., the final stage of the phase transition —
coalescence — starts. The distribution function will start to broaden. The number of
nuclei, however, will not change for a long time yet (since on account of the strongly
decreased supersaturation, the kinetics slows down substantially), and it will start to
decrease only when the dissolved nuclei traverse the distance from a.(t)) to zero. After
the time ¢, (with the exception, evidently, of the start of the process of broadening of the
distribution function) and before the long-time asymptotic is reached, the problem can
apparently be solved only by numerical methods.

We note that in Ref. 1 a more complete investigation of the growth stage was
actually performed: The size distribution function of the nuclei was found at times which
include the nucleation stage, the transition from the nucleation stage to the growth stage,
and the growth stage itself. However, the quantity C in the formulas (4.10) and (4.11) in
Ref. 2 is not a constant of the order of 1, but rather it is an exponential function of the
large parameter x,, and the characteristic times fo and ¢, introduced above also appear.
It is also easy to see that the distribution function presented in the footnote on page 1375
of Ref. 2 reduces to a d-function at times fo<t<<t,.

We note that since the stage being discussed is largely determined by the growth
kinetics of nuclei which are much larger than the critical nuclei, the quantitatively ob-
tained relations hold only for the condensation of a liquid from a gas (liquid) solution,
where there are no reasons for dendritic instability (the hydrodynamics inside a nucleus
will guarantee minimum surface energy (spherical nuclei)). As small crystals precipitate
from a solid solution, the nuclei which are much larger than the critical sizes are unstable
and the growth law of dendrites under the conditions of decreasing supersaturation,
considered above, has yet to be determined. However, we see no reason why the quali-
tative picture (small variance of the size distribution function of the nuclei) should
change.

It is very likely that the picture proposed here describes ordinary fog, which arises
when water condenses from air. In this connection, it would be interesting to measure the
size distribution of droplets in fog (as well as rain droplets and small snowflakes).
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