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Abstract. — We show the possibility of second-order phase transition from the smectic lamellar
phase to the isotropic micelle phase in a dilute surfactant-water solution. A simple picture of the
transition is proposed.

There are two classes of amphiphilic-molecule structures, membrane and micelle, in a
dilute surfactant solution [1]. The most simple example of the first class is the lamellar phase
(smectic order), which consists of parallel bilayers with a period d increasing upon dilution
(see fig. 1). The second class is exemplified by an isotropic solution of spherical micelles, each
consisting of N ~ 10% molecules (see fig. 2).

Experimentally, first-order phase transitions are observed between two different
membrane phases (the lamellar and a less trivial sponge phase [2]) and between a membrane
and isotropic micelle phases. It will be shown below that, at high dilution, there arises the
possibility of a continuous membrane-micelle phase transition.

Consider the most simple case of the transition between the lamellar phase and a solution
of spherical micelles. At a very high dilution, one can disregard membrane-membrane and
micelle-micelle interactions when considering the thermodynamies of the phases. Let « be the
difference of the free energy per molecule in a micelle and a membrane. If one neglects
thermal fluctuations at all, then « (which is a function of temperature, pressure, salinity ...)
will be the driving parameter of the transition from the lamellar phase (« < 0) to the micellar
phase (« > 0). But, due to the logarithmic behaviour of the free energy of a dilute solution [3],
the transition must occur at a finite and positive a.

In the lamellar phase, the thermally activated concentration of micelles in a layer of water
between membranes will be given by

co=nexp[— aN/T], (1)

where the prefactor # is of the order of the molecular density of water, T is the temperature.
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Fig. 1. Fig. 2.

Due to this fact, the period d of the considered structure (see fig. 3) must be larger than that
without the gas of the micelles. If v is the two-dimensional density of molecules in a
membrane, the total concentration ¢ of the molecules in the structure (the membranes and
the water solution in between) equals

v
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Hence, the period of the structure is

d= —— =v(c—nexp[— aN/T]L. (3)
C—Cy

This result shows that, at small coneentrations, ¢ <<%, there is the possibility of a specific
critical phenomenon, since the period of the structure tends to become infinite:

d=_7 (4)

here - =T, — T and

(aN/T
A=v/(a_"__<_.i_>.) , (5)
aT oT T=T,
at the temperature T,
T,=aN/In 2. (6)
c

If A > 0, then the lamellar phase exists at T < T, if A < 0, at T' > T,. For small concentrations,
one can neglect the temperature dependence of n, «, N in (5) and obtain for A

2
a="To v/ 5o0. )
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It is useful to consider the transition on the chemical potential-temperature diagram (see
fig. 4). Here the dashed lines are the chemical potential of surfactant molecules in the micelle
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Fig. 3. Fig. 4.

gas, each corresponding to the definite concentrations (c; < ¢, < ¢), the continuous curve is
the potential in the membranes. As the temperature decreases, the system with constant
concentration ¢ moves along the broken curve with arrows.

The proposed simple picture will be incorrect if the membrane fluctuations are too big.
Quantitatively, one should insist that the fluctuational correction to the elastic constant K,
which defines the bending energy of membranes (see [11) should be small compared with K at
the transition temperature:

K>» 3—T- In £ (8)
4 a
(see [4]); here a is of the order of molecular size and & is the characteristic wavelength of the
fluctuations. In the lamellar phase

£ (K/T)V2d (9
(see [5]); so, from (8) and (9), one can write
d<a(T,./K)?exp[47K/3T.]. (10)
With the aid of relations (4) and (6), one can rewrite inequality (10) in the following
way:

> T,

AK1/2 ( c )47:K/3aN—11n3/2(ﬁ). (11)

an(aN¥2 \ n c
So, for ¢ << n, one can neglect fluctuational effects and the proposed picture of the transition
with the simple law (4) will be valid in a close (bg))lt not so much) temperature region near the

transition, if

47K

>1. 12
3aN (12)

In the opposite case there should be a critical behaviour with the strong fluctuations.
Tremiabitv (19) nlave the role of Ginzbure-Levanvuk eriterion for the transition. It should be
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mentioned that, since an exact numerical prefactor has no real sense in inequality (8), instead
of (12) one has only the following criterion:

K > baN, (13)

with some unknown numerical multiple b, which is of the order of unity. In principle, there is
the possibility of observing a threshold point on the line of the second-order phase transition
when inequality (13) is violated.

From a general point of view, the proposed phase transition is an example of a
second-order isotropic-crystalline phase transition, but it is significantly different from the
continuous crystallization [6] considered in the frame of the Landau theory of the second-
order phase transitions.

There is a similarity between the considered phenomenon and the commensurate-
incommensurate phase transition (and the behaviour of ferromagnetic domain structures in
high magnetic fields, behaviour of strictional domains on the surface of the crystals). In all
cases, there is the possibility of observing an increase in the distances between the
incommensurabilities (domain, domain boundaries) at some critical temperature (magnetic
field, adatom concentrations). However, the proposed phase transition differs radically from
the above examples, since it arises without any direct interaction between elements of the
structure (membranes and micelles). More, rigorously, one must keep in mind that an
interaction between membranes (small, but repulsive) is indispensable for the stabilization of
the lamellar structure. Nonetheless, it need not be taken into aceount in the description of
the transition.

At not too small concentrations of the surfactants, one has to consider membrane-
membrane, membrane-micelle and micelle-micelle interactions, but it is natural to believe
that the picture given above will not change qualitatively up to the moment when a
non-monotonic behaviour of the interactions with distances leads to the usual first-order
phase transition.

In conclusion, we have shown the possibility of a new type of continuous phase transition
from crystalline order to an isotropic phase in a diluted surfactant-water solution. The
crystalline (lamellar) phase consists of a regular stack of parallel membranes with a water
solution of micelles in between. The period of the structure goes to infinity at the transition
temperature. The Ginzburg-Levanyuk criterion is determined for the transition.
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The idea of the proposed transition has originated from discussions with G. PORTE on the
possible properties of highly diluted surfactant solutions.
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