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The kinetics of the nucleation and growth of a new phase in the course of a first-order phase tran
in a solid is described. The growing center of a new phase is very oblate, because this shape l
the elastic energy of the deformations which arise due to the difference in the densities of the
phases. An analogy with the crack problem is emphasized. The growth of the nucleus is govern
the combination of the elastic effects and the diffusion of the latent heat. The elastic cracklike ef
lead to the selection of the growth mode which is substantially different from the ordinary dend
[S0031-9007(99)08492-6]
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Nucleation and growth phenomena occur in conjunctio
with a first-order phase transition. There a critical nucleu
is formed by thermodynamical fluctuations. This nucleu
afterward grows in a deterministic way. The growth of
crystal from the melt or from a solution is a typical exampl
of such a process. Due to the well-known Mullins-Sekerk
instability [1] the dendritic patterns often form.

Novel aspects of the kinetics of phase transitions appe
if the initial metastable phase is a crystal. Because of
difference in the densities of the two cooperating phase
a part of the crystal around a nucleation center of the ne
phase becomes deformed, which modifies the system’s
havior, in comparison with an unstressed situation. Th
critical nucleus has an oblate shape, which is more favo
able compared to a spherical shape because it lowers
elastic energy [2,3]. The energy of the formation of thi
nucleation center and some other thermodynamic prop
ties have been derived in [3] on the basis of the analo
with the crack problem. The elastic deformation leads
a substantial increase in the energy of the formation
the nucleus in comparison with the unstressed situatio
While in the usual growth phenomena the deviation fro
the spherical shape appears due to the Mullins-Sekerka
stability; in our case the shape is very oblate even for t
equilibrium critical nucleus.

The main purpose of this Letter is to describe the grow
of a supercritical nucleus in the presence of the elas
effects. The motion of a growing interface is governed b
the interplay between the irreversible diffusion of the late
heat (diffusional growth) and the reversible work done fo
elastic deformation and the formation of a new surfac
area. The kinetics of this process and pattern formati
during this type of diffusional growth is substantially
modified due to the elastic effect. We will find a new
growth law for the evolution of the nucleus which is quite
different from the customary dendritic growth law [4].

For definiteness, we will speak in terms of melting fo
the time being. The melting process of crystals is usua
initiated at heterogeneous sites such as grain boundarie
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n
s
s
a
e
a

ar
a
s,
w

be-
e
r-
the
s
er-
gy
to
of
n.

m
in-

he

th
tic
y

nt
r
e

on

r
lly
s or

free surfaces. [5]. However, providing the heterogeneo
nucleation can be avoided by means of experimental te
niques; crystals can be superheated above the equilibr
melting point [6,7]. Thus we assume that the new pha
which containsN particles and occupies a volumeW , is
a homogeneous melt with a chemical potentialm and a
pressureP (we assume that the external pressure is zer
Because of the conservation of mass, we have the follo
ing expression for the volume of the melt:

W ­ NyL ­ Nys 1
Z

un dS , (1)

whereyL andys are the atomic volumes of the liquid an
solid phases, and the last term describes the change in
volume of the crystal upon deformation (un is the normal
component of the displacement vector at the interface).

The center is assumed to be a very oblate lentil
radiusR and heighth ø R. In a first approximation, we
can ignore the height of the lentil in solving the elast
problem. In this case the pressureP, exerted on the crystal
by the liquid, is given on a plane circular cut within th
radiusR. This problem is equivalent to the crack problem
and its solution gives us the normal component of t
displacement vector at the interface (see, for example, [8

The equilibrium Gibbs-Thomson condition at the inte
face is [9,10]

ys

"
fs0 1 P 1

s̃2
rr 1 s̃

2
ff 2 2ns̃rrs̃ff

2E
1 aK

#
­ msPd .

(2)

Here fs0 is the free energy density of the undeforme
(initial) crystal and we have introduced cylindrical coo
dinatessr , f, zd; s̃ik ­ sik 2 szz ­ sik 1 P, sik is the
stress tensor,n andE are the Poisson and Young coeffi
cients, andK is the curvature of the interface (considere
positive for a convex solid).
© 1999 The American Physical Society
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It was found [3] that the radius of the critical nucleus
related to the pressureP by the Griffith formula,

Rc ­
pEa

2s1 2 n2dP2
c

. (3)

and the mean lentil height is

hcyRc ­ 16s1 2 n2dysdmyf3pEsyL 2 ysd2g . (4)

Here the quantitydm ­ ysfs0 2 ms0d gives the devia-
tion from the phase-transition point and it is related to t
pressurePc,

dm ­ PcsyL 2 ysd . (5)

Our basic assumption requires the ratio (4) to be small,
is the case for a small deviation from the phase-transit
point and a not too small difference in the atomic volum
of the phases.

The critical nucleus is unstable and continues to gro
if its radiusR is larger thanRc. Latent heat is absorbed
by the front and should be delivered to the front b
thermodiffusion. The temperature field in the solid pha
obeys the diffusion equation and the following bounda
conditions:

D=2u ­ ≠uy≠t , (6)

yn ­ 2D $n ? =ujint , (7)

ujint ­ Ds1 2 PyPcd . (8)

Here u ­ sT` 2 T dcpyLp is the rescaled temperatur
field, measured from the temperature at infinityT`, cp is
the specific heat,D the thermal diffusion constant, andLp

the latent heat. In terms of these parameters,

D ­ sT` 2 TMdcpyLp ­ dmTMcpysL2
pysd

is the dimensionless superheating (TM is the melting tem-
perature). The physics underlying Eqs. (6)–(8) is qu
simple. A melting front absorbs latent heat that diffus
as expressed by (6); the requirement of heat conserva
at the interface gives (7) ($n is the normal to the interface
andyn is the normal velocity). Equation (8) is the loca
equilibrium condition (2) where we have neglected elas
and capillary corrections. Under this condition, the fie
u inside the melt is constant and equal to its interfac
value (8).

The local equilibrium also requires that the pressu
P inside the nucleus is related to the radiusR by the
equilibrium Griffith formula (3) as it is for the critical
nucleus,

P2 ­
pEa

2s1 2 n2dR
. (9)

This pressure decreases whenR increases. Then the inter
face equilibrium condition, Eq. (8), can be rewritten as

ujint ­ DsRd ­ Ds1 2
p

RcyR d . (10)

If the radius of the nucleusR is smaller than the diffu-
sion lengthsDtd1y2, we can solve the Laplace equation in
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stead of the diffusion equation, and, using the well-know
analogy with the electrostatic problem [11], we can fin
the temperature field around the nucleus. The field
away from the growing nucleus,r̃ ¿ R, decays as

usr̃ , td ­
2RDsRd

p r̃
, (11)

wherer̃ ­
p

r2 1 z2. The global heat conservation law
requires that

d
dt

fpR2stdhstdg ­ 8DRDsRd , (12)

whereh is the mean height of the nucleus.
The mass conservation law, Eq. (1), reads

syL 2 ysdpR2hyys ­
Z

un ds ­
16s1 2 n2d

3E
PR3.

(13)

This equation together with the Griffith formula (9) give
the relation betweenh andR,

h ­
p

rR , (14)

where the characteristic length scale

r ­
128as1 2 n2dy2

s

9pEsyL 2 ysd2 (15)

depends only on material parameters. Eliminatingh from
Eq. (12), we find a closed equation for the evolution
the nucleus radiusRstd,

d
dt

fR3y2g ­
24DDsRd

5p
p

r
. (16)

In a close vicinity of Rc the radiusR grows expo-
nentially with timesR 2 Rcd , expsltd with l ­ 8DDy
s5pRchcd , D4. This parameterl is an important ingre-
dient of the nucleation theory. ForR ¿ Rc, DsRd ø D

and Eq. (16) gives the growth law,

Rstd ­

"
24Dt

5p
p

r
D

#2y3

. (17)

We can also find the shape of the growing nucleus. T
temperature fieldu in the vicinity of the nucleus, which
obeys the Laplace equation, is given by the solution of t
corresponding electrostatic problem [11]. The evolutio
equation (7) reads

Ùz ­
2DD

p
p

R2 2 r2
. (18)

This equation can be easily integrated to find a self-simi
shape of the nucleus,

zsr , td
hstd

­
5
8

µ
r
R

∂1y2 Z 1

ryR

ds

s3y2
p

1 2 s2
, (19)
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whereRstd andhstd are given by Eqs. (17) and (14), re-
spectively. Forx ­ sR 2 rd ø R, the shape is parabolic,
z , p

rx, wherer is given by Eq. (15). A closer inspec-
tion shows that, as for the static case [3], in the small vici
ity of the edge, the elastic and capillary effects should b
taken into account and the edge remains singular.

We have used the hydrostatic approximation and ha
neglected the viscous flow necessarily present inside
nucleus due to mass redistribution. The characteris
difference in pressure, arising from the viscous flow wit
the velocity of the order ofÙR, is dP , h ÙRRyh2 where
h is the viscosity. This pressure is small compared to t
hydrostatic pressureP [Eq. (9)],

dP
P

,
hDEsyL 2 ysd3

a2y3
s

D ø 1 , (20)

if the deviation from the equilibrium is small,D ø 1.
Thus, the used hydrostatic approximation is legitimate.

The smooth shape of a growing nucleus should under
a Mullins-Sekerka instability. In the usual case of th
spherical nucleus this happens when the radius of t
nucleus becomes a few times larger than the critical rad
[1]. In our case, in which the nucleus has an oblate sha
an instability occurs when the radiusR is close toRc.
Indeed, the threshold of the instability can be rough
estimated from the conditionlMS , R where the Mullins-
Sekerka length islMS , sd0Dy Ùhd1y2 andd0 ­ aTMcpy
L2

p is the capillary length. Using Eqs. (14) and (16), w
find for the threshold of the instabilitysR 2 Rcd , hc ø
Rc. This instability should lead to the development o
sidebranches behind the moving edge in the same way
it happens in the customary dendritic growth [4].

The growth lawRstd , t2y3 crosses over to the constan
velocity regime at timetc, when the radiusR becomes of
the order of the diffusion length,Rstcd , sDtcd1y2 and the
diffusion equation should be used instead of the Lapla
equation. Using the growth law, Eq. (17), we can estima
tc and the velocity in the asymptotic regime,

y ,
D
r

D2. (21)

This result corresponds to the stationary moving Ivants
parabolic solutionz , p

rx where the selection of the
particular parabola is due to the elastic effects. In additio
to the small scaler the developed “dendritic” structure
has the macroscopic length scale (the distance betwe
the independent branches) of the order ofRstcd , Dyy ,
ryD2. It is important that not only the selected radiusr is
very different from the ordinary dendritic radius, but als
the whole shape which is oblate in our case differs fro
the rather needle shape of three-dimensional dendrites.

We should note that the quasistatic (Laplace) approx
mation, which has been used for the description of the in
tial and intermediate stages of the evolution of the nucleu
is legitimate ifd0yr ø 1. This is possible if the differ-
1508
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ence in the densities is small enough. Otherwise, ev
the initial stage of the evolution should be described in t
framework of the full diffusion equation. In this case, afte
the initial transient we go directly to the final asymptotic
(21) without an intermediate asymptotics (17).

The discussed growth problem is closely related to oth
diffusional growth problems. Equation (18) correspond
to a free-boundary problem, where the temperature at
interface is assumed to be constant along the interfa
and equal to the equilibrium melting temperature. Equ
tion (18) has a family of solutions whereR , tb andh ,
ts12bd. The value ofb ­ 1y2 corresponds to the spheri-
cal shape (or a circular shape for the two-dimensional pro
lem), while1 . b . 1y2 corresponds to the oblate shape
A particular selection ofb depends on the physics involved
in the problem under consideration.

In the customary dendritic growth, capillarity play
the role of a singular perturbation and the anisotropy
the surface energy is a prerequisite for the existence of
dendritic solution [4]. The basic result is that the so-calle
stability parameters ­ 2Dd0ysr2

t yd is supposed to be
equal tospsed and depends only on the anisotropy of th
surface tension. Herert is the radius of the curvature of
the dendritic tip,y is the tip velocity, ande is the strength
of the anisotropy. Together with the heat conservatio
it leads to the selection of the velocity and length sca
of the dendritic structure [4,12]. In particular, for the
intermediate Laplace asymptotics of the two-dimension
growth it gives a growth law withb ­ 3y5 [13,14].

Another example of the related diffusional growt
problem is the so-called noise-reduced diffusion limite
aggregation on two-dimensional lattices described analy
cally in [15]. In addition to the conservation law, the fac
was used that the length scale of the growing tipr is
restricted only by the lattice distance. This leads to t
growth law withb ­ 2y3 as in our case. However, the
physics leading to the selection ofr in the form of (15)
in our case is quite different in that this selection is due
the elastic effects.

The dendriticlike structures during melting have bee
observed experimentally (see, for example, [16], and ref
ences therein). However, the used materials are very p
tic and it is unclear whether the elastic effects have be
very pronounced in these experiments.

In a recent paper [17] the problem of the nucleation
a superheated crystal has been discussed in the conte
a homogeneous nucleation catastrophe for melting. T
authors also took into account elastic effects due to the d
ference of densities but they traditionally used only th
spherical shape. The oblate shape of the nucleus, wh
lowers the elastic energy, would change their results.

The presented theory should be applicable not only
the melting process but also to the other types of firs
order phase transitions inside a solid phase. The growth
gaseous cracklike pores from supersaturated solid soluti
(see, for example, [18], and references therein) requi
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diffusion of the impurities towards the crack, while elast
deformations arise in order to compensate the volume d
ference. Another example is a transition of a metasta
metallic crystal phase into an insulating amorphous sta
which is accompanied by an increase of specific volum
A stepwise annealing was used in [19] to investigate t
temperature dependence of the conductivity of a two-pha
material. On the basis of the obtained results the auth
came to the conclusion that the growing amorphous pha
has very oblate shape producing two-dimensional insul
ing surfaces inside of the parent metallic phase.

In summary, the combination of the surface tension e
fects with the elastic effects near the singular edge (Griffi
formula) leads to the selection condition in the form o
(14) and, eventually, to the new growth laws, Eqs. (17) a
(21). This elastic dendrite is different from the customa
dendrite. In the latter case, selection is mostly govern
by the anisotropic surface tension and the singularities
the interface equation of motion are located in the compl
plane [4]. It is quite remarkable that the physical mech
nism which controls the development of the diffusiona
instability can be so different for solidification and melt
ing. We note that the described elastic effects should
very pronounced also at the latest coarsening stage of
phase separation leading, in mean field approximation,
the coarsening lawR , t1y2 [20] instead of the customary
law R , t1y3. We believe that those findings will stimu-
late new experiments in the broad field of the kinetics
phase transitions in solid.
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