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Elastic Effects on the Kinetics of a Phase Transition
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The kinetics of the nucleation and growth of a new phase in the course of a first-order phase transition
in a solid is described. The growing center of a new phase is very oblate, because this shape lowers
the elastic energy of the deformations which arise due to the difference in the densities of the two
phases. An analogy with the crack problem is emphasized. The growth of the nucleus is governed by
the combination of the elastic effects and the diffusion of the latent heat. The elastic cracklike effects
lead to the selection of the growth mode which is substantially different from the ordinary dendrite.
[S0031-9007(99)08492-6]
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Nucleation and growth phenomena occur in conjunctiorfree surfaces. [5]. However, providing the heterogeneous
with a first-order phase transition. There a critical nucleusiucleation can be avoided by means of experimental tech-
is formed by thermodynamical fluctuations. This nucleusniques; crystals can be superheated above the equilibrium
afterward grows in a deterministic way. The growth of amelting point [6,7]. Thus we assume that the new phase,
crystal from the melt or from a solution is a typical examplewhich containshV particles and occupies a volunig, is
of such a process. Due to the well-known Mullins-Sekerkea homogeneous melt with a chemical potengiabnd a
instability [1] the dendritic patterns often form. pressureP (we assume that the external pressure is zero).

Novel aspects of the kinetics of phase transitions appedecause of the conservation of mass, we have the follow-
if the initial metastable phase is a crystal. Because of ing expression for the volume of the melt:
difference in the densities of the two cooperating phases,

a part of the crystal around a nucleation center of the new W = Nv;, = Nu, + [ u, ds, (1)
phase becomes deformed, which modifies the system’s be-

havior, in comparison with an unstressed situation. Th§here,, andv, are the atomic volumes of the liquid and
critical nucleus has an oblate shape, which is more favorsgjig phases, and the last term describes the change in the
able .compared to a spherical shape because it Iowers'tkyrgﬂume of the crystal upon deformation,(is the normal
elastic energy [2,3]. The energy of the formation of thiscomponent of the displacement vector at the interface).
nucleation center and some other thermodynamic proper- The center is assumed to be a very oblate lentil of
ties have been derived in [3] on the basis of the analogy,giysgr and heighth < R. In a first approximation, we
with the crack problem. The elastic deformation leads tQ:ap jgnore the height of the lentil in solving the elastic
a substantial increase in the energy of the formgtlon_ OerobIem. In this case the pressuitgexerted on the crystal
the nucleus in comparison with the unstresse_d _snuanorby the liquid, is given on a plane circular cut within the
While in the usual growth phenomena the deviation fromyaqjysg. This problem is equivalent to the crack problem
the spherical shape appears due to the Mullins-Sekerka ignq jts solution gives us the normal component of the
stability; in our case the shape is very oblate even for thgjispjacement vector at the interface (see, for example, [8]).

equilibrium critical nucleus. _ , The equilibrium Gibbs-Thomson condition at the inter-
The main purpose of this Letter is to describe the growth;ce is [9,10]

of a supercritical nucleus in the presence of the elastic

effects. The motion of a growing interface is governed by 52+ (rﬁ,(ﬁ — 206,044

the interplay between the irreversible diffusion of the latent vs| fso + P + E T ak
heat (diffusional growth) and the reversible work done for

elastic deformation and the formation of a new surface = u(P).
area. The kinetics of this process and pattern formation 2)

during this type of diffusional growth is substantially

modified due to the elastic effect. We will find a new Here f, is the free energy density of the undeformed

growth law for the evolution of the nucleus which is quite (initial) crystal and we have introduced cylindrical coor-

different from the customary dendritic growth law [4]. dinates(r, ¢,z); Gix = oix — 05, = gy + P, oy isthe
For definiteness, we will speak in terms of melting for stress tensory and E are the Poisson and Young coeffi-

the time being. The melting process of crystals is usuallycients, andX is the curvature of the interface (considered

initiated at heterogeneous sites such as grain boundaries positive for a convex solid).
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It was found [3] that the radius of the critical nucleus is stead of the diffusion equation, and, using the well-known

related to the pressui by the Griffith formula, analogy with the electrostatic problem [11], we can find
rEa the temperature field around the nucleus. The field far
R. = 21 = P2 (3) away from the growing nucleus,> R, decays as
and the mean lentil height is u(F 1) 2RA(R) (11)

he/Re = 16(1 = v, p/[3mE@L — v)’]. () i
Here the quantityd u = v,fs0 — u(0) gives the devia-
tion from the phase-transition point and it is related to th

pressurep..,

where7 = +/r2 + z2. The global heat conservation law
erequires that

d 2

— [7R*(t)h(t)] = 8DRA(R), 12
Sp = Pclvy — vy). (5) ar TRORO] : 42
Our basic assumption requires the ratio (4) to be small, awhere# is the mean height of the nucleus.
is the case for a small deviation from the phase-transition The mass conservation law, Eg. (1), reads
point and a not too small difference in the atomic volumes

16(1 — »2
of the phases. _ _ (v, — vy)7R*h /v, = f u, ds = MPR?
The critical nucleus is unstable and continues to grow 3E
if its radiusR is larger thanR.. Latent heat is absorbed (13)

by the front and should be delivered to the front by_ . . . e .
thermodiffusion. The temperature field in the solid phas%gSrsgzsaog]e:\?v%eggegng;h the Griffith formula (9) gives

obeys the diffusion equation and the following boundary

conditions: h=+pR, (14)
DV*u = du/or, (6)  where the characteristic length scale
vn = =Dt - Vulin, (1) 128a(1 — »?)v?

uline = A(1L = P/P,). ®) P = 9nE(w, — v,)? (13)

Here u = (T.. — T)c,/L, is the rescaled temperature
field, measured from the temperature at infiriity, c,, is
the specific heat) the thermal diffusion constant, arig,
the latent heat. In terms of these parameters,

depends only on material parameters. Eliminafirfgom
Eqg. (12), we find a closed equation for the evolution of
the nucleus radiug(z),

A= (T. — TM)Cp/Lp = 6MTMCP/(L?7US) %[RWZ] = 245D7A(R) .
is the dimensionless superheatifgy,(is the melting tem- o W\/ﬁ_
perature). The physics underlying Egs. (6)—(8) is quite In @ close vicinity of R. the radiusR grows expo-
simple. A melting front absorbs latent heat that diffuseghentially with time(R — R.) ~ exp(Ar) with A = 8DA/
as expressed by (6); the requirement of heat conservatidi7Rc/ic) ~ A*. This parameted is an important ingre-
at the interface gives (7)i(is the normal to the interface dient of the nucleation theory. Fdt > R., A(R) =~ A
andv, is the normal velocity). Equation (8) is the local @and Ed. (16) gives the growth law,
equilibrium condition (2) where we have neglected elastic 24Dt 2/3
and capillary corrections. Under this condition, the field R(t) = [ }

u inside the melt is constant and equal to its interfacial TP
value (8). We can also find the shape of the growing nucleus. The
The local equilibrium also requires that the pressur&emperature field: in the vicinity of the nucleus, which
P inside the nucleus is related to the radiRsby the obeys the Laplace equation, is given by the solution of the
equilibrium Griffith formula (3) as it is for the critical corresponding electrostatic problem [11]. The evolution

(16)

(17)

nucleus, equation (7) reads
TEa
pr=_"==_ 9) . 2DA
— 2 = . 18
2(1 — v)R LT IR - 2 (18)

This pressure decreases whincreases. Then theinter- ) o ] o
face equilibrium condition, Eq. (8), can be rewritten as  This equation can be easily integrated to find a self-similar

shape of the nucleus,
uline = A(R) = A(1 = VR:/R). (10)

1/2 1
If the radius of the nucleuR is smaller than the diffu- er,t) _ 5 <L> / / 45 (19)
sion length(Dr)!/2, we can solve the Laplace equation in- h(t) 8 \R r/R 321 — §2°
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whereR(r) and h(z) are given by Egs. (17) and (14), re- ence in the densities is small enough. Otherwise, even
spectively. For = (R — r) < R, the shape is parabolic, the initial stage of the evolution should be described in the
z ~ /px, wherep is given by Eq. (15). A closer inspec- framework of the full diffusion equation. In this case, after
tion shows that, as for the static case [3], in the small vicinthe initial transient we go directly to the final asymptotics
ity of the edge, the elastic and capillary effects should bg21) without an intermediate asymptotics (17).
taken into account and the edge remains singular. The discussed growth problem is closely related to other
We have used the hydrostatic approximation and havdiffusional growth problems. Equation (18) corresponds
neglected the viscous flow necessarily present inside thie a free-boundary problem, where the temperature at the
nucleus due to mass redistribution. The characteristimterface is assumed to be constant along the interface
difference in pressure, arising from the viscous flow withand equal to the equilibrium melting temperature. Equa-
the velocity of the order oR, is 8P ~ nRR/h*> where tion (18) has a family of solutions where ~ t# andh ~
n is the viscosity. This pressure is small compared to the!! "#). The value ofg8 = 1/2 corresponds to the spheri-

hydrostatic pressur® [Eq. (9)], cal shape (or a circular shape for the two-dimensional prob-
3 lem), whilel > B8 > 1/2 corresponds to the oblate shape.
0P _ mDE(v. — vy) A< 1 (20)  Aparticular selection o8 depends on the physics involved
P a?v} ' in the problem under consideration.

In the customary dendritic growth, capillarity plays
the role of a singular perturbation and the anisotropy of
the surface energy is a prerequisite for the existence of the
dendritic solution [4]. The basic result is that the so-called
stability parametels = 2Dd,/(p?v) is supposed to be
gqual too*(e) and depends only on the anisotropy of the
Surface tension. Herg, is the radius of the curvature of

if the deviation from the equilibrium is small < 1.
Thus, the used hydrostatic approximation is legitimate.
The smooth shape of a growing nucleus should underg
a Mullins-Sekerka instability. In the usual case of the
spherical nucleus this happens when the radius of th
nucleus becomes a few times larger than the critical radiu

[1]. In our case, in which the nucleus has an oblate Shap&e dendritic tip,v is the tip velocity, and is the strength

an instability occurs when the_ radlL{s_ is close toR.. of the anisotropy. Together with the heat conservation,
Indeed, the threshold of the instability can be roughly. . ;
it leads to the selection of the velocity and length scale

estimated from the conditiolys, ~ R where the Mullins- " "0 rific structure [4,12]. In particular, for the

Sekerka length is\ys ~ (doD/h)"/? anddy = aTyc,/ | ; , : .
5 . . intermediate Laplace asymptotics of the two-dimensional
L, is the capillary length. Using Egs. (14) and (16), Wegrowth it gives a growth law withg = 3/5 [13,14].

find for the threshold of the instabilifR — R.) ~ h. < e
. . ¢ ¢ Another example of the related diffusional growth
R This instability should lead to the development of o, ;0 g the so-called noise-reduced diffusion limited

sidebranches behind the moving edge in the same way %gregation on two-dimensional lattices described analyti-

it r']r?pepern;v\;:]htlgiﬂ?(lstimg/g Sgg(jsgtéco%reﬁv;’mr[]i]'constant cally in [15]. In addition to the conservation law, the fact
velocitgre ime at time., when the radiu® becomes of was used that the length scale of the growing Aips
Y reg ! restricted only by the lattice distance. This leads to the

. . ,-\., 1/2
Cifusion squation should bé used instead of e LapiacdroW W With 8 — 2/3 as in our case. However, the
9 P ghysics leading to the selection pfin the form of (15)

tenggczﬂé \Lf;g]gtthﬁ]%\%wgs] l?nw’tgt?c. Sgi)r’nvge can estimaly, our case is quite different in that this selection is due to
c y ymp gime, the elastic effects.

D ., The dendriticlike structures during melting have been
v 7 A% (21)  observed experimentally (see, for example, [16], and refer-
ences therein). However, the used materials are very plas-
This result corresponds to the stationary moving lvantsotic and it is unclear whether the elastic effects have been
parabolic solutionz ~ ./px where the selection of the very pronounced in these experiments.
particular parabola is due to the elastic effects. In addition In a recent paper [17] the problem of the nucleation in
to the small scalep the developed “dendritic” structure a superheated crystal has been discussed in the context of
has the macroscopic length scale (the distance betweenhomogeneous nucleation catastrophe for melting. The
the independent branches) of the ordeR6f.) ~ D/v ~ authors also took into account elastic effects due to the dif-
p/AZ%. Itis important that not only the selected radjuss ~ ference of densities but they traditionally used only the
very different from the ordinary dendritic radius, but alsospherical shape. The oblate shape of the nucleus, which
the whole shape which is oblate in our case differs fromowers the elastic energy, would change their results.
the rather needle shape of three-dimensional dendrites.  The presented theory should be applicable not only to
We should note that the quasistatic (Laplace) approxithe melting process but also to the other types of first-
mation, which has been used for the description of the inierder phase transitions inside a solid phase. The growth of
tial and intermediate stages of the evolution of the nucleuggaseous cracklike pores from supersaturated solid solutions
is legitimate ifdy/p < 1. This is possible if the differ- (see, for example, [18], and references therein) requires
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