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The dynamics of elementary steps on an atomically smooth crystal-liquid interface and, in particular, the pro-
cess of collisions of steps differing in sign are considered. It is shown that, along with the conventional annihi-
lation of steps in such collisions, both the overthrow of steps to the neighboring row with the formation of a
new atomic layer (passage) and the reflection of steps from each other can take place under certain conditions.
The overthrow of steps gives a qualitatively new mechanism of the growth of facets in the absence of renewable
sources such as grown-in dislocations. Under these conditions, the growth kinetics of a crystal with atomically
smooth facets changes substantially. In particular, the processes considered above may form a basis for physical
mechanisms of unconventional growth regimes observed for helium crystals at low temperatures. © 2003

MAIK “Nauka/Interperiodica”.
PACS numbers: 81.10.Aj; 67.80.-s; 68.08.-p

It is well known that the growth of a crystal with
atomically smooth facets can proceed due to either con-
tinuously acting sources of elementary steps such as
screw dislocations and Frank-Read sources or two-
dimensional nucleation. The impossibility of crossings
. is an essential property of steps, which is commonly not
questioned. For steps of the same sign, this means the
impossibility of one atomic layer to hang over another,
that s, the impossibility of a configuration with a high
excessive energy. From the same energy consider-
ations, it is clear that, upon coming in contact, two steps
of different signs annihilate in the contact region with
the formation of a bridge (Fig. 1a). The step noncross-
ing property was used as the basis in classical works on
the theory of crystal growth [1].

The property of steps indicated above is undoubt-
edly retained as long as all the processes with the par-
ticipation of steps are sufficiently slow, so that each step
section at each instant of time is in a local equilibrium
and the kinetic energy of a step can be neglected. In
other words, the corresponding relaxation time must be
small in comparison with the “collision time” w/V,
where V is the relative velocity of steps and w is the
characteristic width of a step, which equals the inter-
atomic distance by the order of magnitude. This condi-
tion can easily be violated in the case of atomically
smooth facets of a helium crystal at temperature tend-
ing to zero, when the relaxation time increases without
limit and the step velocities can be very high up to the
sound velocity [2]. It is natural to suggest that the col-
liding steps of different signs in this case will be able to

pass inertially one over the other forming a new atomic
layer (see Fig. 1b) or to reflect from each other. We will
show in this brief communication that this actually
takes place under certain conditions. Here it is neces-
sary to note that this idea in itself is analogous to the
idea of the “kinematic multiplication” of dislocations in
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Fig. 1. (a) Collision of steps in a quasi-static case. (b) Pas-
sage of steps one over the other at high velocities and large
relaxation times. A nucleus of a new layer is formed at this
place as a result of the collision.
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the crystal bulk, which was proposed by Frank [3] even
before the discovery of Frank—Read sources.

We will describe the structure and dynamics of steps
using the so-called weak-coupling approximation,
which is widely used in the theory of phase transitions
associated with the initiation of faceting in helium crys-
tals (see, for example, [4]). In this approximation, the
effective periodic potential retaining the surface in the
vicinity of certain equilibrium positions is small in
comparison with the surface energy because of strong
fluctuations. Correspondingly, the energy of a step, that
is, the transition region between two neighboring equi-
librium positions of the surface, is also small, and the
width of this region is conversely large in comparison
with the interatomic distance. This allows one to intro-
duce a continuous variable {(r) corresponding to a local
displacement of the surface averaged over the fluctua-
tions. Consider the case of extremely low temperatures.
Then the dissipation, which accompanies the motion of
steps, and the external supersaturation, which is neces-
sary for its maintenance, are small, and the correspond-
ing terms in the equations of motion can be neglected.
In addition, we will consider both the liquid and the
crystal incompressible. Then a displacement of the sur-
face is associated only with crystallization or melting,
and the total energy is a sum of the surface and kinetic
energies. The surface energy minus an inessential con-
stant can be written as

H. = J.%(VC)zdzr+jU0(l~cosz%c)d2r, 1)

where the first term takes into account a change in the
surface area, the second term corresponds to the contri-
bution of the effective potential, a is the interplanar dis-
tance, and o is the energy of unit surface area (here, we
make no distinction between the surface energy and
stiffness).

The kinetic energy in this case is the kinetic energy
of the liquid, whose motion is due to the displacement
of the surface;! with regard to the conservation of mass
in crystallization, we obtain

1(ps— Pz)zj‘aC(t, Nl r)d'rdr

Ha = 72 P, ot ot |r-r|’

2

where p; and p; are the densities of solid and liquid
helium. The corresponding equation of motion takes
the form

1 (d°¢ d'r . -
= gﬁm—mp+ sin(@) = 0, 3)

! The additional contribution due to the rearrangement of atoms on
passing from the liquid to the crystalline state [5] is relatively
small and does not affect the qualitative conclusions.
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where dimensionless coordinates x and y are measured
in units & and time, in units T

£ = oa’ " = /A__p2 a £
47t2U0 pl 41t2U0 (4)
2n
¢ = TC’ Ap = Ps—=Prs

and Uy, in turn, can be expressed through the energy B
of the unit length of immobile step

2 2
_ T (Bla)
Uo = 16 o - )
Let us also give here numerical values for the (0001)
facet of a *He crystal: o = 0.25 erg/cm? [6-8], Bla =
0.014 erg/cm? [8], and the other parameters

Uy=15x10"0a, E~4a, t~5x10"2s, ©
Vo = E/1~28x%x10* cm/s < c=3.6 x 10* crss,

where c is the speed of sound in the liquid.

The real steps on a crystal surface are always some-
what curved (see Fig. 1), and the radius of curvature R
commonly exceeds or, at least, coincides by the order of
magnitude with the radius of the critical nucleus R..
Because R, > & (otherwise, the probability of conven-
tional two-dimensional nucleation would be high; note
also that the value of R, is inversely proportional to the
external supersaturation, which we assume to be small),
the inequality R > § is also fulfilled, so that steps in col-

lisions first come in contact in a region R* ~ /RE,
which is small in comparison with R, where they can be
considered rectilinear and parallel to each other. There-
fore, first we must analyze the one-dimensional case, in
which instead of Eq. (3) we have

1 R* Yo ,, 2% .
;rjln(m)ydx = -a?—sm(p. (7)

This equation was solved numerically in the follow-
ing sequence. First, the function @(x — V), which
described the stationary shape of a single step moving
with a prescribed velocity V measured in units V,,, was
defined. Note that, at V = 0, this shape coincides with
the shape of a single kink of the sine-Gordon equation
and deviates more and more from this shape with
increasing V. At V> 1, the stationary shape in the form
of a simple kink loses its stability. The question of
which configurations are stable in this case still remains
unexplored.

At the second stage, the function corresponding to
the stationary shape of two steps of different signs mov-
ing toward each other with velocities V; and V, was
used as the initial condition for the solution of the prob-
lem of collision between such two steps. It was found
that, depending on the values of initial velocities, three
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Fig. 2. Schematic diagram of collision processes of steps
moving with different velocities of counter motion: regions
correspond to (1) annihilation of steps, (2) reflection, and
(3) passage with the creation of a new atomic layer.
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Fig. 3. Generation of excitations at the crossing point of
steps and their propagation along the boundary of the newly
formed layer.

qualitatively different results could be obtained: the
passage of step over one another with “overthrow” to
the neighboring row, annihilation, and reflection. All
three processes are accompanied by the emergence of
“ripplons” of higher or lower amplitudes. Regions cor-
responding to each of these processes are indicated in
the schematic diagram in Fig. 2.

The further evolution of the system is substantially
different in these three cases. Case (3), when a nucleus
of a new atomic layer confined by two intersecting arcs
of steps is formed (Fig. 1b), is of most interest. Gener-
ally speaking, it should be expected that an instability
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leading eventually to the formation of a bridge, as is
shown in Fig. 1b, will develop in the crossing region.
However, the terms in the total equation of motion (3)
responsible for this instability are small at the initial
instant of time by virtue of the smallness of the crossing
angle v, that is, the corresponding lifetime is large. At
the same time, the result of the action of perturbations
is not accumulated with time, because the crossing
point itself moves along the Y axis with a velocity V, =
2VHy, which is faster than the velocity of the propaga-
tion of perturbations along the step (V.. < 1, see Fig. 3).
Therefore, the formation of a bridge becomes possible
only at y ~ 1; that is, when the size of the nucleus of the
new layer / is on the order of R, and thus [ > R_.. We can
see that actually no additional restriction for the stable
growth of the nucleus of the new layer arises in compar-
ison with the schematic diagram in Fig. 2.

Note in conclusion that, with regard to the phenom-
enon considered above, the theory of the growth of
atomically smooth crystal facets at low temperatures
requires substantial corrections. In particular, it is pos-
sible that the proposed growth mechanism provides the
basis for the so-called “burstlike” growth of disloca-
tion-free helium crystals observed experimentally [2],
which defies explanation within the known growth
mechanisms.

~ We are grateful to V.I. Marchenko for useful discus-
sions.

This work was supported by the Civilian Research
& Development Foundation (project no. Rp-2411-MO-
02), the State Program of Support for Scientific
Schools, and the Russian Foundation for Basic
Research (project no. 02-02-16772).

REFERENCES

1. W.K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans.
R. Soc. London 243, 299 (1951).

2. J. P. Ruutu, P. J. Hakonen, A. V. Babkin, et al., J. Low
Temp. Phys. 112, 117 (1998).

3. E. C. Frank, in Report of the Conference on Strength of
Solids (Physical Society, London, 1948), p. 46.

4. P. Nozieres, in Solids Far from Equilibrium, Ed. by
C. Godreche (Cambridge Univ. Press, Cambridge,
1991), p. 1.

5. L. Puech and B. Castaing, J. Phys. Lett. 43, 601 (1982).

A. V., Babkin, D. B. Kopeliovich, and A. Ya. Parshin,

Zh. Eksp. Teor. Fiz. 89, 2288 (1985) [Sov. Phys. JETP

62, 1322 (1985)].

7. O. A. Andreeva and K. O. Keshishev, Pis’ma Zh. Eksp.
Teor. Fiz. 46, 160 (1987) [JETP Lett. 46, 200 (1987)].

8. E. Rolley, C. Guthmann, E. Chevalier, and S. Balibar,
J. Low Temp. Phys. 99, 851 (1995).

o

Translated by A. Bagatur’yants



