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Surface of a 3He Crystal: Crossover from Quantum to Classical Behavior
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3He crystals start to show facets on their surface only at about 100 mK, well below the roughening
transition temperature. To understand the reason for that, we have performed the first quantitative
investigation on the growth dynamics of the basic (110) facet at 60–110 mK. The obtained values of the
step free energy suggest an extremely weak coupling of the solid-liquid interface to the crystal lattice
which we show to be the result of quantum fluctuations of the interface. The renormalization group
approach by Nozières and Gallet, modified to incorporate quantum fluctuations, explains well the
temperature dependence of the step energy measured in this work and at ultralow temperatures by
Tsepelin et al., where the coupling is known to be strong. We have thus shown that, paradoxically, the
role of quantum fluctuations is at higher temperatures much larger than at low temperature.
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The crystal surface can be either in a rough (rounded)
or in a smooth (faceted) state. Facets reflect the periodic
nature of the underlying lattice. The measure of the
strength of the coupling between the facet and the lattice
is the energy of an elementary step which separates the
terraces of neighboring atomic layers. At low tempera-
tures the step energy is finite, which causes a strong
anisotropy of the surface stiffness and of the growth
rate. As a result, a macroscopic facet is present on the
crystal surface in equilibrium or during growth. However,
at a certain temperature the crystal surface enters a rough
state [1], where the step energy is zero and the crystal
surface is rounded without any peculiarity. Fisher and
Weeks [2] and Jayaprakash et al. [3] have found the
universal relation between the roughening transition
temperature TR, surface stiffness �, and step height
d: TR � �2=���d2.

In bcc solid 3He there exists a big discrepancy between
the calculated roughening temperature of the (110) facet,
TR � 260 mK, and the highest temperature at which this
type of facets has been observed in the experiment,
Tobs � 100 mK [4]. Rolley et al. [4] have explained this
contradiction by dynamic roughening which blurs the
growth anisotropy if an excessive driving overpressure
is applied [5]. Domination of dynamic effects indicates
that the coupling of the crystal surface to the lattice is
weak; Rolley et al. have estimated the step free energy �
of the (110) facets to be smaller than 10�11 erg=cm at
100 mK.

On the other hand, at 0.55 mK the measured step
energy of the (110) facets, �0 � 6:6� 10�10 erg=cm [6],
is close to the value of �d, which means that the coupling
is strong, as in usual crystals. To understand the nature of
this dramatic change (occurring well below the rough-
ening transition temperature), measurements of the step
free energy in a wide temperature range were necessary.

In this Letter, we describe our interferometric mea-
surements on the growth dynamics of the (110) facet on
bcc 3He crystals. An original method has been used to
0031-9007=04=93(17)=175301(4)$22.50 
detect the extremely small (a few Pa) overpressures on the
facet by measuring the curvature and the velocity of the
adjacent rough parts of the crystal surface. By this way,
the free energy of an elementary step was measured in the
temperature range of 60–110 mK.

As long as the step energy is responsible for the an-
isotropy of crystal growth, it can be obtained by mea-
surements on the growth dynamics of a crystal. In the
case of 3He far away from the melting curve minimum
(TMCM � 320 mK), the mobility of the interface is lim-
ited by the transport of the latent heat L, which results in
the temperature difference �Tls across the moving inter-
face [7]. This difference is compensated by an excess
liquid pressure over the equilibrium melting pressure
�p � ��s�l=���L�Tls=T [8], where �s and �l are the
mass densities of the solid and liquid, and �� � �s � �l.
For a rough surface which grows uniformly, the tempera-
ture difference �Tls;R is due to the Kapitza resistance RK,
and the overpressure is proportional to the normal veloc-
ity of the interface: �pR � L2�2

s�lRKvR=���T� � �vR
(all the latent heat is released in the liquid) [7].

A smooth facet lacks sticking sites for atoms; therefore
in the regime of small overpressures facets can grow due
to only the motion of the elementary steps provided by
screw dislocations.When overpressure �pF is applied, the
steps move, forming spirals which rotate around the dis-
locations. The step mobility is also restricted by thermal
effects, but, in contrast to the uniform heat flux through
the rough surface, the heat flux through the facet has
peaks near the moving steps where the latent heat is
released. At temperatures near 100 mK the heat conduc-
tivity of the solid 3He is by 2 orders of magnitude higher
than that of the liquid, and we may consider the tempera-
ture of the solid as a constant. By solving the thermal
diffusion equation for the set of moving steps separated
by the distance l, we find the temperature difference
�Tls;st across the step and the corresponding overpressure
on the facet �pF as functions of the velocity of the steps
vst: �Tls;st � �RK=l 	 ln�l=w�=����
d�sLvst,
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FIG. 1. Interference pattern of a growing 3He crystal at
78.4 mK. The inset is a fit of the phase distribution over the
area corresponding to the rough (rounded) surface used as a
reference for the overpressure measurements; two (110) facets
are seen as sets of parallel equidistant fringes (highlighted)
below and on the right-hand side of the inset. The height
difference between the surface areas mapped by neighboring
fringes is 0.20 mm. The orientation of the selected rough areas
is such that they cannot contain (100) or (211) facets which also
could be present at these temperatures.
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Here � is the heat conductivity of the liquid, w � �d2=�
is the step width [5], and vF � �d=l�vst is the facet normal
velocity.

The first term on the right-hand side of Eq. (1) has
exactly the same form as the overpressure on the rough
surface and corresponds to the average heat flux through
the interface. The second term corresponds to the heat
spread in the liquid near the moving step and thus equals
to the effective overpressure �pst which drives the motion
of a single step on a facet. By applying the solution of the
equation for the spiral growth [Ref. [1], Eq. (42)], we find
the relation between the facet velocity vF and �pst �
�pF � �vF:

vF �
���2�dT

20��2
s�2

l L
2 ln�l=w�

�p2
st; (2)

where l � 20��l=�d���pst� is the asymptotic distance
between the neighboring steps of a spiral [1]. The only
unknown parameter in Eq. (2) is the step energy �, which
can thus be obtained by measuring the velocity-
overpressure dependence of a facet.

It is a very difficult experimental task to measure an
overpressure directly since it depends on the temperature
at the interface, which can hardly be determined with the
needed accuracy. Because of the large latent heat and poor
heat conductivity of the liquid, significant thermal gra-
dients are always present during crystal growth. Fortu-
nately, the crystal surface itself can serve as a very sen-
sitive, local overpressure gauge. Considering the Laplace
pressure of the crystal surface and the variation of the
hydrostatic pressure in the liquid, one can express the
overpressure in terms of the height h and the curva-
ture K of the crystal surface: �p � const� �lgh�
�l�K=��.

For a successful experiment, in order to avoid the
nucleation of new crystals, the growth velocity of a sam-
ple crystal should be smaller than �0:1 �m=s [9] and the
temperature should not change faster than a few mK=day.
Using a cryogenic valve in the 4He filling line of our
Pomeranchuk-type cell and a feedback program to stabi-
lize the temperature, we were able to grow a single crystal
of about 4 mm diameter and measure its growth dynam-
ics in the temperature range of 60–120 mK. The whole
experiment, however, took about 3 months to complete.

To image the crystal surface, we used a high-resolution
low temperature Fabry-Pérot interferometer [10]. By fit-
ting the phase distributions over the original interfero-
grams with a polynomial (see Fig. 1), we obtained smooth
surface profiles h�x; y� from which the curvatures and
velocities of the crystal surface were found. We were
thus able to measure not only the growth rate but also
the variation of the driving overpressure on the crystal
surface by the interferometer only; no other device, such
175301-2
as a thermometer or a usual mechanical pressure gauge,
and no calibrations were needed. The accuracy of our
method is a fraction of Pa, most of the error being
due to the curvature measurements. The effective over-
pressure on the step is given by �pst � ��vR � vF� 	
�lg�hR � hF� 	 �l�KR=��, where index F relates to
facet and R to some (reference) rough part of the crystal
surface. The velocity-overpressure dependencies mea-
sured at different temperatures are shown in Fig. 2.

The step energies were found by fitting the experimen-
tal data with the spiral growth model and are presented in
Fig. 3 together with the value measured at 0.55 mK by
Tsepelin et al. [6]. We tried to explain the observed
temperature dependence of the step energy following
the renormalization group (RG) approach developed in
detail by Nozières and Gallet [5]. In the RG theory, the
step energy is set by the surface stiffness � and the
periodic pinning potential V cos�2�z=d� which repre-
sents the interface-lattice coupling. Generally, both �
and V are renormalized by the short-wave thermal fluc-
tuations, but in the first order of the expansion in powers
of V=� the renormalization of � is negligible, and one
may write

� � �4d=��
�������
�V

p
; V � V0 exp��2�2hz2i=d2�; (3)

where V0 is the bare coupling energy at microscopic scale.
The average amplitude of thermal fluctuations of the
interface is given by
175301-2



FIG. 2. Velocity of the (110) facet of a 3He crystal at different
temperatures as a function of the effective overpressure on the
step (see text). Solid curves are quadratic fits to the data.
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T
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ln

k0
k�
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where k0 is the short scale cutoff, and k� is the wave
vector corresponding to the scale at which the coupling
energy per unit cell, 4�V=k2, reaches the energy of
fluctuations with corresponding k and thus locks the
interface at larger scales [5]. As temperature approaches
TR � �2=���d2, k� and therefore the step energy drop to
zero. We have fitted our data by Eqs. (3) and (4) with the
values of V0 and k0 being the fitting parameters. The fit is
rather good (dashed line in Fig. 3), but the values of fitting
parameters are confusing. The bare coupling energy V0 is
by 3 orders of magnitude smaller than the surface tension,
giving the zero-temperature value of the step energy 20
times smaller than the value measured by Tsepelin et al.
[6]. In turn, the value of the short scale cutoff, k0 � 10=d,
is certainly too high.

We conclude that the standard renormalization theory
[5] fails to explain the experimental data. In fact, this is
not surprising since this theory ignores quantum fluctua-
FIG. 3. Measured step free energy of the (110) facet of a 3He
crystal as a function of temperature. Dashed line is a fit by the
theory of renormalization by thermal fluctuations [5] [Eqs. (3)
and (4)]. Solid curve is a fit by the generalized renormalization
theory [Eqs. (3) and (6)].
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tions, whereas the amplitude of zero-point oscillations of
helium atoms is comparable with the interatomic distance
and, consequently, the amplitude of quantum fluctuations
of the interface could be quite high. Thus, the Nozières-
Gallet theory should be modified to incorporate quantum
fluctuations.

To do it, we used the dynamic version of the RG theory
[5], based on renormalization of the Langevin-type equa-
tion of the interface motion

� _z � �r2z 	
2�V

d
sin

�
2�z
d

�
� R�t; ~r�; (5)

where � is the intrinsic damping coefficient of the inter-
face and R is the random force. The ‘‘inertial’’ term with
second time derivative is negligible due to strong damp-
ing. The general form of the correlation function of R is
set by the fluctuation-dissipation theorem [11], R2

k;! �

� �h! coth� �h!=2T�. We point out that the surface displace-
ment z is calculated from the crystal lattice; thus it is
entirely due to the transfer of particles from one bulk
phase into another and has nothing to do with the thermal
and zero-point oscillations of atoms in the solid.

The renormalization procedure does not differ from
the usual one. One starts with the short scale k0, where
the nonlinear ‘‘pinning’’ term in Eq. (5) is assumed to
be small and the crystal surface is freely fluctuating.
Again, as in the classical case, in the first order only V
is renormalized, and we recover Eq. (3). hz2i, after inte-
gration over k, can be expressed now as

hz2i �
�h

4�2�

Z !0

0
d! coth

�h!
2T

�
arctan

�k20
!�

� arctan
�k2�
!�

�
;

(6)

where !0 is the high frequency cutoff.
Note that in the classical limit the damping coefficient

� disappears from the final formula. On the contrary, in
the opposite limit of high frequencies, both the value and
temperature dependence of hz2i are essentially deter-
mined by the damping. Note also that in the derivation
of Eq. (6) we have neglected possible dispersion of � at
high frequencies and wave vectors. To our knowledge,
this problem was never discussed earlier.

As for the temperature dependence of the damping
coefficient, it was discussed by Puech et al. [12], who
suggested that � varies as 1=T due to the Fermi degener-
acy of the liquid phase in contact with nondegenerate
solid: the ‘‘bottle neck’’ is the energy transfer across the
interface. Since this conclusion is based on purely statis-
tical arguments, it seems to remain valid even at very
high frequencies, up to the Fermi frequency. In the ab-
sence of more elaborate theory, we assumed in our analy-
sis that � / 1=T. As a reference, we have used the value of
the damping coefficient measured at the melting curve
minimum ��320 mK� � 66 g=�cm2 s� [7]. When fitting
the experimental data, we chose the value of the bare
amplitude of the pinning potential V0, which gives the
175301-3
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right value for the step energy at ultralow temperatures,
so that we again had only two fitting parameters, !0 and
k0, for our set of data.

The generalized renormalization theory [Eqs. (3) and
(6)] fits the experimental data very well (solid line in
Fig. 3), and the obtained values of the fitting parameters
k0 � 1:9=d and !0 � 7:4� 1011 1=s are convincing.
Indeed, the value of k0 is very close to the highest possible
wave vector of the oscillations of the �110
 plane,��������
2=3

p
�=d. The value of !0, in turn, agrees well with

the frequency range of fluctuations in liquid 3He obtained
in the experiments on inelastic neutron scattering [13]. In
fact, at 0.55 mK the coupling is strong and the developed
approach is valid only qualitatively [5]; hence the ob-
tained values of k0 and !0 probably need some small
correction. Note that in the close vicinity of the rough-
ening transition the temperature dependence of the step
free energy is determined by the large-scale thermal
fluctuations, as in the standard RG approach, while the
quantum fluctuations only renormalize the bare step en-
ergy to a small but essentially finite value.

Significant reduction (up to 90%) of the bare step
energy �0 due to quantum fluctuations apparently takes
place also on the solid-superfluid interface of 4He.
However, in that case the effect is not as strong (basically
owing to much larger value of the surface stiffness) as in
3He and it is temperature independent [14] because the
surface fluctuations (crystallization waves [15]) are
weakly damped and their spectrum does not depend on
temperature. In contrast, in 3He the damping is relatively
strong and quickly increases when temperature decreases,
providing the increase of the step free energy. The damp-
ing remains strong also below the superfluid transition in
the liquid and the antiferromagnetic transition in the solid
at 2.5 and 0.9 mK, respectively, at all frequencies except
for frequencies below �108 1=s, where the superfluid and
antiferromagnetic fluctuations take place. Corresponding
contribution to the total amplitude of the surface fluctua-
tions can be shown to be small, and thus there should not
be significant effect of these transitions on the step en-
ergy. On the other hand, a possible ferromagnetic ordering
of the interface at T � 20–30 mK (see, for instance,
Ref. [16]) could increase significantly the value of V0 at
low temperatures.

With the measured values of the step free energy we
can find the conditions for dynamic roughening, which
takes place when the overpressure on the facet, �pF *

�l�KR=��, exceeds the threshold for spontaneous nu-
cleation of the seeds of a new solid layer, �pc �
�2�l=�d3���� [5]. Thus, the minimum step energy
which can be measured with a crystal of a size D is

�min � �
��������������
4d3=D

p
, or about 10�12 erg=cm for a crystal

with the diameter of 4 mm, and above the corresponding
temperature of about 130 mK the crystal shape is always
rounded.
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To conclude, our measurements and analysis show that
in 3He strong quantum fluctuations of the solid-liquid
interface keep the step free energy too small to be mea-
sured down to temperatures of about 0:4TR. To our knowl-
edge, this is an exceptional case. However, when tem-
perature decreases, the quantum motion of the interface
with respect to the crystal lattice appears to be more and
more suppressed, and the facets show up. Finally, at ultra-
low temperatures, the surface of a 3He crystal becomes an
even more classical object than in 4He—contrary to
usual expectations based on comparison of the ampli-
tudes of zero-point oscillations in the bulk solids.
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