different field components are connected by the relation

o=, + 1l (6_y-,) (3)

where ¢O = y_ and ¢-l is arbitrary. Relation (3) denotes the synchronization of the SRR

components, 2uch that the total output radiation from the resonator constitutes a periodic
sequence of ultrashort pulses; this sequence has an arbitrary initial phase given by ¢q = ¢0
+ |q o_q - ¢0) *mm (mq is a definite integer)., It signifies that the entire sets of SRR
components is broken up into two groups, in each of which a phase relation of the type (3)
is satisfied.

(1] V. N. Lugovoi, Opt. spektr. 27, No. 4 (1969).
(2] v, N. Lugovoi, ibid. 27, No. 5 (1969).

INTERNAL GRAVITATIONAL WAVES IN A SUPERFLUID SOLUTION

A. Ya. Parshin

Institute of Physics Problems, USSR Academy of Sciences
Submitted 5 November 1969

ZhETF Pis. Red. 10, No, 11, 567 = 570 (5 December 1969)

It is known that internal gravitational waves can propagate in ordinary liquids as a
result of inhcmogeneity of the liquid in the gravitational field [1]. For such waves to exist
it is necessary that the thermal equilibrium be established much more slowly than the
mechanical equilibrium. It is clear that no such phenomenon can exist in superfluid helium,
in which this requirement is not satisfied; any disturbance of the equilibrium can lead here
only to waves of first or second sound.

A superfluid solution is analogous in. a certain sense to an ordinary liquid, in that a
temperature gradient can be produced in it under stationary conditions [2]. We shall show
below that gravitational waves can also exist in such a solution.

The conditions for mechanical equilibrium of a superfluid solution in a gravitstional

waves gre

vep-prg=0;, vp,-g=0

where p is the pressure, p the density, g the free-fall acceleration, and My, the chemical
potential of He in the solution.

In a gravite.tional wave, p and M), differ little from their equilibrium values, This
means that p and My, should be regarded as constant when the thermodynamic quantities are
differentiated. We assume the temperature gradient to be small enough, in order for the
changes of the equilibrium values of the thermodynamic quantities over distances on the order
of a wavelength to be small.

The hydrodynamic equations of solutions [2] linearized for the purpose of our problem
can be written in the form

ap'

i divita (1)
ot iv] ",

362



’ ’
6v‘n vy

+ . ‘~p’ =
1
= AV L L NdiviT + (—n -+ §) vdivyy, (2)
ov; sos . i ’
.+VI‘;'= €3Vd1"1 +(¢4-P€3)Vd”’vnv (3)
ot ot
a » ’ -1 ’
at (pe)” + vlpc) v) +pcdiv v, = pD(Ac’+ kpTIAT"), (%)
+VSV;+SdiVV’:=
at
= Keff T-1VAT  + c'lQD(AC'+kTT-1AT’)' (5)

(A1l the symbols in {1) - (5) are the same as in [2]; the primed quentities denote small
additions to the equilibrium values.) We have retained the terms with VS and V{pc) in the
last two equations, since it will be shown that they are the ones determining the phenomenon.

Using the fact that A is potential, we cbtain from (2) after some transformations

a
(p, — - 2A) (Av; - vdivv]) = gAp’ - vigye?, (6)
, At :
and from (4) and (5) ;
9s” ’ -1 ’ 1. §
Py + VsV, = Kne'ffT AT’ (pc) - ;s s = . (7)

pc
If we neglect the term with Vs in (7), then we obtein only an ordinary damped tempera-

ture wave. It is therefore clear that all the terms in the last equation are in general of

the same order of magnitude. Returning to the initial system we see that in this case we

should have, generally speaking,
VS\'; ~ Sdivv, .
We seek a solution in the form of a plene wave Vr'1 ~ exp(-iwt + ik-%), Then, in view of the
smellness of VS, we have
kiv: >> kdiv v,
i.e., the oscillations in question are transverse, just as in an ordinary liquid. Neglecting

the small term in (6) we obtain from the condition for the compatibility of (6) and (7) the

sought connection between w and k:

(w+iykz)(w+iuk2)-w§=0, (8)
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oT 1
-1 . ="
y=(pCT) Keff( s )p,“‘ H V—P" n,
dp as
. -1 \ H .
Wy = gp ( as) dz sin A

Py Hy

Here 0 is the angle between the direction of the z axis (vertically upward) and the direction
of E. Substituting this solution into the exact system of equations [2], we can verify that
all terms neglected by us are indeed small.

At small k and at wg > 0, Eq. (8) described weakly-damped oscillations:

! 2
@=w, - —— (y+v)k®.

In the opposite case of large k we have two damped waves, viscosity and temperature.
Finally, if the condition

(dg + yvkt > 0 (9)

is violated, then (8) has a solution with a positive imaginary part, i.e., the equilibrium
state is unstable against perturbations of this type. The condition (9) is thus a condition
for the absence of convection in a superfluid solution, and the quantities
as ap [
-1 -1 =2/ P
peT e 03'n(57)  and 9p,m (as ) yY
Py 1, P, ", dz

(where & is the characteristic dimension) play the role of the Prandtl and Grashof numbers,
respectively.

1 take the opportunity to thank A. F. Andreev for constant interest and numerous
valuable hints,
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