Capillary propagation of sound and anomalous Kapitsa
jump at the boundary between solid and liquid helium
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Itis shown that the probability of sound propagation across the quantum boundary
between liquid and solid helium at 7" = 0 is proportional to the square of the
frequency. The Kapitsa jump at such a boundary depends, therefore, on the
temperature according toa 7 > law.

PACS numbers: 67.80.Cx, 67.40.Mj, 67.80.Gb

The boundary between solid and liquid He* at 751 K has unique properties.'”
Only two faces of a helium crystal, identifiable with respect to symmetry, are in the
classical state of atomically smooth surface. The quantum delocalization of the surface
defects on the remaining faces is so large that a new state,* a quantum analog of an
atomically rough surface, is produced. The growth and fusion of such boundaries at
T=0 occur without dissipation—in a coherent manner, and the conditions for a
phase equilibrium at the boundary are satisfied at each moment of time in this case.
Castaing and Noziéres® noticed that this leads to an anomalous reflection of sound
from the boundary, since the conditions for a phase equilibrium correspond to a speci-
fied pressure and the boundary is always adjusted to satisfy this condition by recrystal-
lization. At finite temperatures the thermal excitations retard the motion of the bound-
ary, the conditions for the phase equilibrium break down and the sound passes from
one phase to another. Castaing et al.* recently reported that the propagation of sound
decreases with decreasing temperature.

In this paper we show that at 7= 0 the sound passes through quantum bound-
aries as a result of the capillary effects. The probability of such a passage is proportion-
al to the square of the sound frequency.

Since our only aim is to demonstrate this effect, we shall limit ourselves to the
examination of an isotropic crystal. The thermodynamic condition for a Gibbs phase
equilibrium in this case has the form
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where F, is the free energy of a unit volume of the undeformed crystal, v, is its atomic
volume, u is the chemical potential of the liquid, P is the pressure of the liquid, a is the
density of the surface energy, and R, and R, are the main radii of curvature. The
pressure P in an acoustic wave differs from the equilibrium pressure P, by an amount
SP. Since pu(P) = p (Py + 8P ) =u(P,) + vdP, where v is the atomic volume of the liquid,
we obtain from Eq. (1)
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The conditions for a mechanical equilibrium in the isotropic case reduce to the
following equations (for details see Ref. 5):

1 1

Opp *+ P+,8(—R-l— + E) =0, %un = (3)

where o, is the stress tensor in the crystal, n is the index of the normal to the surface,
1 = 1,2 are the indices of the Cartesian coordinate system in the boundary plane, and
B is the surface tension coeflicient.

The problem can be fully defined by adding one more condition to the system of
boundary conditions (2) and (3), a corollary of the conservation of particles
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which, in the absence of recrystallization (£ = 0), reduces to the equality of the normal
velocity components of the liquid V¥, and solid #,. The value of { represents the
boundary shift due to pressure or crystallization.

As a result of emission of an acoustic wave, for example, from a liquid, ripples are
formed on the boundary due to recrystallization { ~exp(ikx — iwt ) with a wave vector
k. equal to the tangential projection of the wave vector of sound k, where R, ' =0,
but R [ ' =d°¢C /dx* and, according to the conditions (3), a voltage is produced in the
* crystal, i.e., the sound penetrates the crystal. In determining the passage of sound from
the liquid to the crystal, the velocity u, €V, should be disregarded in Eq. (4) and the
V,<u, should also be disregarded in determining the passage of sound from the
crystal to the liquid. Without dwelling on the standard calculations (see Ref. 6), we
give, for example, the expression for the ratio of the amplitude 4, of the transmitted
transverse sound to the amplitude 4 of sound emitted from the liquid at an angle 8 to
the normal:
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where ¢ is the velocity of sound in a liquid and the remaining notations (c,, o, E, 6,,
and 6,) are standard notation in the theory of elasticity (see Refs. 6 and 7).

Thus, the probability of the passage of sound, equal to the square of the modulus
of the amplitude ratio (5), is proportional to the square of the frequency w?.

It is clear that this greatly complicates the heat transfer at the boundary of liquid-
solid helium at temperatures =1 K and the Kapitsa jump here should have an anoma-
lous temperature dependence T ~°.
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We note that there are ordinary Rayleigh waves on the quantum surfaces of a
helium crystal whose spectrum is determined only by the properties of the crystal, like
the boundary with the vacuum. An allowance for the capillary effects leads to their
velocity dispersion but not damping, since the sound velocity in liquid helium is larger
than the velocity of transverse waves in solid helinm. The velocity of surface acoustic
waves on both classical faces also depends substantially on the properties of the liquid
{see Ref. 6). The heat transfer across such boundaries is achieved in the usual way.
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