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LETTER TO THE EDITOR

Finite-size effects cannot explain experimental
equilibrium crystal shape
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Abstract. Experiments on equilibrium metallic and helium crystals show an ‘anomalous’
mean-field behaviour of crystal shape near facet edges, in contradiction with existing micro-
scopic theories. In this work, the possible finite-size, or 1/R, origin of the observed behaviour
is analysed. It is shown that these 1/R effects are negligible, even for very small crystals
(—1 um). We conclude that, neither finite-size effects nor classical long-range step-step
interaction can account for the observed expenimental behaviour.

Since the work of Burton and Cabrera [1], the subject of the roughening transition and
its reiated faceting phenomena has been a classical topic in surface physics. Despite
the theoretical and experimental effort devoted to clarify the nature of this faceting
transition, a controversial situation still exists about some fundamental questions. From
a theoretical point of view, a wide class of interface models {2, 3] predicts the existence
of a universal behaviour of the equilibrium crystal shape near the roughening transition.
One of the most important predictions of these models is the existence of a universal
behaviour of the equilibrium crystal shape (ECS) near a facet edge. The ECs, Z(x), as a
funiction of the distance, x, to the facet edge should behave as

Z = Z“ o ijn'rz (1)

This behaviour, characteristic of a Pokrovsky-Talapov transition {4], reflects the
fact that the surface free energy has a dependence on the surface slope p as =
B + Bilp| + Bilpl’, where the B,p* term, characteristic of the classical phenom-
enological theories {5-7] is absent.

Recent experiments on equilibrium lead (8] and indium [9] crystals are in dis-
agreementwith the predictions which lead to the prbehaviour. They are infullagreement
with the mean-field-like theories. This discrepancy between experiments and PT behav-
iour has been attributed to two very different physical origins. First, there is the possible
existence of some effective interaction between steps (up to now of unknown origin)
which could lead to the p* term observed experimentally [7]. On the other hand, it has
been argued that finite-size, or 1/R, effects could account for this discrepancy [8, 10]. In
particular, Rottman and co-workers [8] have claimed that 1/R effects would produce a
rounding effect near the facet edge. From the experiments on lead [8] and indium [9]
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crystals (with a typical size of 5-10 um) it can be seen that the characteristic size of this
1/R-rounded region is about 3000 A in the x direction parallel to the facet plane, and
about 300 A in the z direction normal to it. Within this region the PT behaviour would
be modified by the rounding effect.

In this work, we study in detail the possible 1/R effects in the Ecs, as well as their
relevance in the analysis of the experimental profiles. As we will show, all the 1/R effects
are too small to be observable in the usual type of experiment, where the spatial
resolution is about 60 A [8, 9].

Below the roughening temperature, the physical picture of a crystal surface is based
on the concept of ‘steps’ as linear defects on the surface. From a microscopical point of
view, the equilibrium crystal shape of a finite crystal is determined by a given distribution
of a finite number of steps. In order to study the possible finite-size corrections to the
ECS, we must take into account the atomic structure (i.e. the step distribution) of the
region adjacent to the facet. Let us consider the simple model of the crystal surface
sketched in figure 1. In this model the crystal surface consists of a flat surface and a finite

Xy=0 TEI & X, Xp=L Facet

|
h

'

? Vd

. »

= I

> S’

I ‘ZI.X"] =nh

Figure 1. A microscopic model for a crystal surface near a facet edge.
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number N of steps, of height A, located at x, > x, > ... > xy, and with the boundary
conditions x, = L and xy = 0. We will assume that the characteristic size L is much
smaller than the typical facet size. In this case, we can neglect the curvature of steps and
we can consider them as parallel straight steps. It is well known that the interaction
between two parallel steps, separated at a distance r, follows a general r % interaction
law. This behaviour does not depend on the nature of the interaction (both elastic [11],
dipole—dipole [12] and entropic (PT) [4] interactions lead to the same result). Then we
can write the total energy E of our system as

E=B,N+(y/2) § (2, =2,)7 )

where f3, is the energy per step and y is a constant (y > 0).

The equilibrium positions of the steps will correspond to the minimum of the total
energy, with the additional condition of constant number of steps N, and constant
volume V of the crystal, i.e.

F=B N+ (/2) 2 (x, —x,)* + AV = minimum ©)
m¥n
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where A is a Lagrange constant (A > 0) and Vis given by

N
V=2 hx,.
n=0
Taking the variational derivative of (3) we have
AF=0= -y > (x, —x,)" + Ah (4)
m#n

or, taking &, = (Ah/y)""x,,

N
S En-E =L e (5)

Since this sum converges sufficiently quickly, we can take, as a first approximation, the
nearest-neighbours contribution. In this case (5) reduces to the simple relation

di* =1 d.’ —d} =1 | (6)
with d,, = (£,,_, — E,,). The above equation has the solution d,, = m~'/, or in other
words

X0 = X = (y/AR)P 2 d, = (y/AR)P T nP, (7)

n=1 n=1
For m > 1 we can replace the sum in (7) by an integral obtaining

xo — X = (3/2)(y/Ah)VPm?3, (8)
Taking Z(x,,) = mh (see figure 1), we obtain

Z = (2h/3)*(A/y)"* (xo — x,)*? 9)

i.e. exactly the Pokrovsky-Talapov behaviour. It can be shown that corrections to (7)
and (9) associated with ‘long-range’ interaction between steps have only the effect of a
renormalisation of the coefficients y, but the main result, i.e. the pT behaviour, remains
unchanged.

As we can see from (7) and (8), the only difference in the ECS associated to the finite
number of steps (or finite-size effects) is just the difference between £7_,n~ ' and
J&n~'3 dn, which is non-negligible only for the first few steps. It is worth noting that
ourapproachisrather general. In fact, the PTbehaviour Z = x*/*isa general consequence
of a r 2 step interaction law and does not depend on the details of the different micro-
scopic theories. Moreover, the above analysis shows that the inhomogeneity in the step
distribution, associated to the finite size of the crystal, produces no corrections to the pT
behaviour. It means, in particular, that any macroscopical approach which would take
into account the existence of this inhomogeneity (for example by including ‘gradient
terms’ in the surface free energy) should give negligible corrections on a macroscopic
scale.

J J Saenz and N Garcia (unpublished work) have recently studied the possible
corrections to the ECs associated to the existence of gradient terms (=K(Vp)?) in the
surface free energy. However, an inhomogeneous distribution of steps (following a r 2
interaction law) gives a negligible, and negative (see [5]), square gradient contribution
to the macroscopic surface free energy.




1.308 Letter to the Editor

There is also another trivial finite-size effect connected to the finite initial slope given
by

po = h/(xo = x1) = (v/Ah)"h. (10)

We can estimate the order of magnitude of p, just by noting that when (x, — x,,) = R
the slope will be p = 3Z/dx = 1. Then from (9) and (10) we will have

po = (h/R)". (11)

Taking & = 5 A and a crystal size R = 5 um, we have p, = 0.05. It is clear that the size
effectsdiscussed above are very small on the macroscopicscale, and cannot be observable
within the actual experimental resolution of about 60 A as reported in [8] and [9].

Now we turn to other possible finite-size effects from a macroscopical point of view.
It is well known [13] that the presence of surface stress causes small crystals to have
compensating volume stresses which should be included in the determination of the ECs.
These elastic effects will produce corrections to the surface free energy of the order of
B3/(€R) where B, is the surface stress, € is an elastic constant and R is the mean radius
of the crystal. Other possible sources of 1/R effects, like the dependence of the free
energy on the curvature of the crystal, are expected to be as much of the order of Boh/
R (notice that in general B3/(€R) < Byhi/R). We will expect that corrections to PT
behaviour become important when 1/R contributions are of the order of the T term in
surface free energy (=B;|p|®), i.e. B> < Bo h/R. It is easy to see that this condition
implies a 1/R-rounding region, in the x direction, of the order of [10]

(xp — x) = (W?R)'3 (12)

which for typical experimental values gives a region of about 100 A, well below the
approximate value of 3000 A proposed by Rottman and co-workers [8, 10]. Notice that
the macroscopic discussion of 1/R effects gives essentially the same answer that we have
obtained before. In fact, the condition given by (12), in terms of the surface slope, means
that we would expect corrections to the T behaviour for slopes p < (h/R)"? = p, i.e.
in a region of the order of one or two surface steps. '

All of these estimations show that 1/R effects are negligible on the macroscopic scale
and do not significantly influence the Ecs of even very small crystals (of the order of 1 um
in size). This means that any reasonable interpretation of experimental data on crystals
larger than about 1 um should be based on asurface free energy B(p) defined for acrystal
of ‘infinite’ size. From this point of view the non-zero mean-field term (B,p*) obtained
by fitting of experimental shapes of both Pb [7, 8] and In [9] crystals should reflect some
characteristicinteraction energy of the surfaces of infinite crystals. There is also evidence
of the existence of a non-zero 8, term in very large (=1 cm) helium crystals [14, 15].
Moreover, in He crystals the surface stiffness (@ = 3?8/ap?) even increaseswhen p — 0!
(in clear contrast with the pT-predicted vanishing of &@). In this respect the experiments
of Keshishev and Andreeva [16] seem to be specially relevant. First their data were
obtained by measuring the spectrum of crystallisation waves [17] which removes all
questions about the equilibrium character of the surface. Second, the temperature was
well below the roughening temperature, where the ‘critical region’ in which the pT
behaviour should be observable is sufficiently wide. In this case they also obtained a
non-vanishing surface stiffness near p = 0.

We can conclude that the experimental data on both metallic and helium crystals do
not show the PT critical behaviour (8, = 0) and support the mean-field-like picture
(B, > 0). The main unresolved problem is: what is the physical sense of a non-zero f8,?
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Even when finite-size corrections can lead to some effective B8, term in the free energy,
it is negligible in actual experiments. Then, we could think in terms of interactions
between steps which could lead to a mean-field behaviour of the surface. Generally
speaking we can write the surface free energy as

B =Bo + Bilpl + A (13)

where AB;,, would be the contribution of the step-step interaction. This term can be
expressed as

ABu = (1/2L) X, U(nL) p=h/L (14)

where L is the distance between steps. Long-range interactions U = x™™ give A, =
p™*!. As commented before, all known interactions go as x ? and give §,=0. In
order to obtain 8, # 0 it is necessary that U = x! and only nearest neighbours can
interact to avoid divergency in (14). From a classical point of view it means that each
step would create a field =x"'. In this case the total energy of a solitary step, which
includes the interaction of this field with point defects on the surfaces, should diverge
at long distances. However, such a step cannot be considered as a linear defect on the
surface, and the roughening transition, based on the concept of steps, would become
unphysical. We have also considered the possible corrections to the surface energy,
associated to the interactions between steps and a non-zero distribution of point
defects, present always in a real crystal. Also, in this case there are not mean-field-
like corrections and the critical PT behaviour is not modified.

To conclude, we have shown that finite-size effects cannot explain the experimental
data on the equilibrium crystal shape. A mean-field term, =p?, is needed to explain
the experimental results both on metallic and He crystals. Experimentally, this term
is not a small quantity and even dominates near the facet edge (7, 9]. We have shown
that if the global picture of the roughening transition, based on the concept of steps
as linear defects on the surface, is correct, the mean-field p> term cannot come from
a classical long-range interaction between steps. Therefore, in metal and helium
crystals the physical interaction which leads to the dominant, mean-field, term in the
surface energy is unknown and the existing theories with a leading =p° term give a
clearly unrealistic surface behaviour. Further research in this direction will help us in
the understanding of general surface phenomena.
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