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Abstract

We have studied theoretically the effects of rotation on the equilibrium shape of the interface between superfluid and
solid helium. Surface structures in the shape of hillocks and ridges appear in the presence of a vortex lattice in the
superfluid. These structures are very sensitive to the orientation of the interface boundary with respect to the crystal
planes when surface stiffness is very anisotropic, as occurs well below the roughening transition. We predict the
appearance of ring shaped facets for fast rotation speeds. These effects should be observable by using optical techniques.

1. Introduction

It is well known that vortex lines in rotating superfluid
helium with a free surface alter the shape of the sur-
face - they form small dimples af about 60 A in height
[1]. Similar dimples appear at the interface separating
a superfluid from another liquid or gas [2]. In the case of
the solid-superfluid helium interface one also expects this
phenomenon, but with bulges instead of dimples: bulges
because the superfiuid is the lighter phase so it floats on
the surface of the solid.

Usually the dimples or bulges are too small to be seen
directly even with modern optical technique [3, 4]. The
main limiting factor is the surface tension, «, which has
the same order of magnitude for the solid-liquid and
liquid—vapor interfaces. However in crystals, as in any
anisotropic medium, the quantity which controls the
surface curvature is the tensor of surface stiffness. In hep
“He crystals the principal components of this tensor are
known to depend strongly on the surface orientation [5,
6]; in particular one component becomes very small in
the vicinity of the basal plane (000 1) at low temperature.
As a consequence the structures formed by the vortices in
this special case are quite different, and more impor-
tantly, the size of the structures is much larger than in
the case of an arbitrary surface orientation. Under

some circumstances the forms of hillocks and ridges are
large enough to be observed optically. In this paper we
explore the conditions where this occurs.

Apart from the hillocks we predict a new effect for the
global shape of the rotating crystal. Consider a crystal
with a horizontal basal plane rotating in a cylindrical
vessel. If the interface is rough the global shape would be
a parabola. When the interface is facetted the free energy
in the rotating frame is minimized with a different shape
in which there is a central facet (0001) and a circular
concentric facet separated by a section of curved surface.
This effect only happens above a critical angular velocity
of rotation. This effect can also be observed optically.

2. Basic equations and experimental data on the
surface tension anisotropy

We consider the following experimental set-up (Fig. 1):
a cylindrical vessel with vertical axis, rotating around it
with angular velocity Q, containing a crystal of *He in
equilibrium with liquid phase, c-axis of the crystal being
tilted by an angle t. We have to study the interface
boundary profile z = {(x, y), taking into account the
motion of a liquid due to the presence of vortices. In
a macroscopical approach this profile can be found from
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Fig. 1. Typical experimental arrangement.

the condition of phase equilibrium for rotating media. In
the case of slow motion, when characteristic velocities are
much less than the velocity of sound, we can neglect the

dependence of « on the relative velocity (v, — v,) and
write (see Refs. [7, 8]):

1 1 "o

E"E op, +;’,_.vém+ v, —v) =0 (1)

where I and s indicate liquid and solid, respectively (v, is
the velocity of superfluid component), ép, = p, — po is
the liquid pressure, measured from the nominal equilib-
rium pressure of a flat interface in absence of any flows,

f=a ¢) 1+ 72

is the surface free energy per unit area in the x, y plane,
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0 and ¢ being, respectively, colatitude and the longitude
angle of the interface normal n with respect to c-axis,
which dependencies on t and {}, in general case are given
by formulas of spherical trigonometry (we assume that
c-axis tilted in x-direction):
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Note that if o = const., the term f7,, {};, take the usual
form of Laplace pressure «(1/R; + IfR;].

For the following analysis we need to specify the de-
pendence of o on # and ¢ in the case of small 8, # < 0.01.
Experimental data [5, 6] show that in this case « practic-
ally does not depend on ¢. As for the dependence «(f), at
small # and low temperatures it’s resonable to use the
model of stepped surface (see for a review Ref. [9]), which
yields (t = tan )
a(0) /1 + 12 = oo + Bt + gﬁ + O(t%), (3)
where a, is the surface tension of the basal plane, fla
is the free energy per unit length of the elementary
step, a is its height, y is a parameter of step-step interac-
tion, f and y both are essentially temperature dependent.
Using Egs. (2a) and (3) one can calculate the components
of the surface stiffness tensor in the limit of small 0. In
particular, for a horizontal interface ({, = 0,0 = 1) we
have

fw=§'

T

f;:x =71, fxy e 0’ {4)
ie. well-known expressions for longitudinal (f.,) and
transversal (f,,) surface stiffnesses; f,, > f, in this limit. It
is necessary to note that experimental data on f and y are
rather controversial (see Refs. [5, 6] ); moreover, the
latest data obtained by Rolley et al. [ 10] show that at low
temperatures y is very small and the next term in the
expansion (3) dominate at ¢ ~ 0.01. From theoretical
point of view, Andreev [11] critisized the model of step-
ped surface and concluded that strictly speaking the very
form of this expansion is incorrect at any nonzero tem-
perature. However, at low temperatures (0.1 K or lower)
Andreev’s arguments seem to be valid only at very large
scales. Taking into account all these issues, we will use
the expansion (3) in our analysis. For numerical estima-
tions we assume: at T <0.1K p=0.01 erg/cm?,
7 =~ 0.5erg/cm? (see Ref. [6]).

In the following analysis we assume also that (), are
continuous function of x, y everywhere on the interface
(with only one possible exception of end points of vortex
cores, which should be considered in a macroscopical
approach as singular points). This assumption is equiva-
lent to the condition of local stability of any surface
orientation, at least in the vicinity of basal plane (000 1).
It means that [}, is a positive-definite matrix for any
small 6. As far as we know, all experimental data on the
equilibrium shape of helium crystals support this as-
sumption (see e.g. Ref. [12] ). In our approximation the
presence of superflow does not change the surface tension
and hence does not lead to the surface instability of this
type. One can say that in this work an another type of
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instability is considered, similar to the Kelvin—Helmholtz
type (see Ref. [7]).

3. Hillock on the basal plane formed by a single vortex

Consider at first a crystal with zero tilt angle 7. In this
case we have a facet (0001) in the center of the cell and
an array of vortex lines normal to the facet. In the liquid
bulk these vortices form a triangular lattice with the
distance between nearest neighbors b = [2nﬁ,-’\/§m£2]1-"2
where % is the Planck constant, m is mass of *He atom
(see for a review Ref. [13]). This lattice rotate as a solid
with the same angular velocity Q, and we can assume
that it remains underformed down to the crystal surface.
Let R; be the position of one of the vortices axis. At small
distances r <b,r = R — R; (R, R; being measured from the
rotation axis), v, can be expressed in the form

i Q 5
marz| 7T )

Corresponding expression for dp, is:

v(=v5+v,-, Vi=Vé~

3p, = — p,(® + 4v?) — pgl + const.

pef h 3 i
=——2~ e — pege + const. (6)

(we neglect very small difference between p, and the
density of superfluid component; the second term in Eq.
(4) is due to gravity).

With the surface tension « independent on angle ¢ we
may expect that the minimum possible energy will have
an axially symmetric bulge, quite similar to the case of
the dimple formed by an individual vortex on the surface
of liquid helium ([1, 2]; see, however, Ref. [16]). There-
fore, we shall look for a solution of the type of axisymmet-
ric hillock { (r) (see Fig. 2); thus we obtain from Eq. (1):

1d (B 1
———(rf,')+%—(—);—(Ps_Pr)9C+A=O 7

rdr m

Fig. 2. A hillock on the basal plane.

for ' = —t <0 (here t = |{'|); pay attention to J-singu-
larity at {" = 0); here A is a constant, which can be deter-
mined from the solution of Eq. (1) for the whole interface.
As we shall see from the result, the gravitational term in
Eq. (7) can be neglected. The first integration yields
e Yoo PefB 21 r A

f,—ﬁ+§C —"5(;);111;4‘*2"?‘ (8)
The constant of integration ¢ defines the behavior of {’ in
the limit of small r; taking into account that our macro-
scopical approach becomes invalid at distances of the
atomic scale r ~ g, it seems reasonable to set ¢ ~ a.
Further, we are looking for a solution, which is localized
near r = 0; in other words, mustbe {' ={ =0atr— oo.
Eq. (8) has continuous solution of this type if A < A,
where

1 (m\? ph?
A = vNon i -1 5
=855 ®
At A = A, the hillock’s radius can be estimated as
NJBNP/ﬁZthZN $
roﬂ".d,,,wﬁ = lnlgam2 = 115A, (10)
and its height
4 3
Qoz—roﬁzZZA. (11)
3 ¥

Numerical values of ry and {, decrease if A decreases; e.g.
atA=0

2 2
"‘(h) LNy (12)
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Turning back to Eq. (7) we see that the gravitational term
is really negligible. In the opposite case, 4 > 4, Eq. (8)
has only delocalized solutions, || — oo at r— co. It
means that actually such an interface is not in equilib-
rium, the crystal should grow under these conditions.
The value of 4, is thus the critical overpressure (or
supercooling force, according to Noziéres [9]) for the
facet growth in the presence of vortices (note that r = §/A
is the radius of critical nucleus for a given value of
overpressure A).

4. Hillocks and terraces on vicinal interfaces

Now turn to the case of nonzero tilt angles 1. Let again
the crystal ¢c-axis be tilted in the x-direction. A horizontal
surface of such a crystal might be considered as an array
of straight steps parallel to the y-axis with spacing d = a/r.
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clear. The equilibrium condition for the “last™ step, at
r ~ d includes the driving force by the central region of
the vortex. We may allow for this driving force macro-
scopically just introducing in the right hand of Eq. (13)
a “source” in the form of é-function with the amplitude
A equal to the integral action of the central region:

=
-
- -—

Fig. 3. Formation of a bulge as a result of displacement and
bending of steps: (a) x - z section, (b) top view.

At small 7, when d > r, with r, from Eq. (10) or (12), the
solution presented in the previous section is still valid,
but an additional mechanism of the surface bulging ap-
pear in this case, due to displacement and binding of
steps (see Fig. 3(a), 3(b)). For the same reason the value of
overpressure A is zero in this case.

In order to estimate the effect of step displacement,
remaining in the frames of our macroscopical approach,
we should come to length scales much larger than d.
Corresponding differential equation is essentially nonlin-
earin {j, and can be solved analytically only after lineariz-
ation; assuming that {}, <t and using Eq. (4), we write

h\* 1

e o B s B "
?uu+§n+i =5 —(p—p) gl =0. (13)

2\mfr

We are again looking for a localized solution, i.e. { — 0 at
r — oo. Besides that, we need one more boundary condi-
tion, concerning the behavior of ), at r — 0 (actually, at
r ~d). Strictly speaking, this condition can be derived
only from “mesoscopical” consideration of the equations
of steps equilibrium. However, the underlying physics is

d 2 2
A= .[ &(ﬁ) lQZJU'dr = TP, (E) lnl. (14)

& 2\mi) o m T

After that, in order to find the desired solution, it is

convenient to include the point r = 0 with its vicinity in
the domain of Eq. (13). To do it we only need to replace
the singular term 1/r? by a function which is smooth in
the scale r ~ d, e.g. 1/(r* + d?) ; as a result, the solution
remains correct with logarithmic accuracy. We have
finally

it ﬁru p( h 5 1
}"Tan-i'?yy—g(Ps“P/]C: ]

— Ad(r).
(15)

Now, using 2d Fourier transformation, we obtain the
solution of Eq. (15) in the form

B A cosyr\? (simﬁ/)z)
r,) = ——K
0 ¥) 2/ By o(?‘\/( ly ) E I

P h Zj'«c
T T—— | kdk
4n(ps — polg (m) 0

J‘Zm KO (kd}e"‘" cos{w — )
X dw
1]

k*(I?cos 2w + Bsin’w) + 1’
where tan ¥ = y/x, K, is the McDonald’s function,
Li=villes—p/) g and I, = /Bps — p)gr — the
capillary lengths in x- and y- direction, respectively,
[, being much larger than [,. For the height of this hillock
{o at r ~ d we find from Eq. (16),

1 h\?
ng& ——(—) lnr—!i"lni.
4 JVBy\m a ta

The numerical estimation of Eq. (17) at t ~ 1072 yields
Lo~235A, ie. at least ten times larger than at T = Q.
One more essential feature of this hillock can be seen
from the Eq. (16) : its sizes measured along the x- and y-
axes are rather large, of the order of [, and I, respectively.
Numerically, at =102 [ =17x10"2cm,
I, = 0.24 cm; at smaller t the ratio [,/I, becomes even
larger. So this hillock is essentially anisotropic, being
clongated in the y-direction, parallel to steps. This result
looks quite natural under the conditions when the steps
linear tension f is much stronger than the interaction

between them y72.

(16)

(17)
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Fig. 4. Ridges on a vicinal surface formed by a vortex lattice.

Now let us take into account the existence of vortex
lattice in rotating superfluid. The lattice parameter b can
be, depending on Q, larger or shorter than [, [, (e.g. at
Q = lrad/s, b =24 x10"%cm). Consider the situation
when b meets the condition [, <b <!, vector b directed
along the y-axis. In this case the bulges which belong to
one of the lattice rows parallel to b, strongly overlap each
other; at the same time, there is practically no overlap-
ping between different rows (Fig. 4). Such an interface
may be viewed as a regular array of well separated ridges
with spacing ﬁbﬁ, almost homogeneous in the y-direc-
tion. In order to find the average profile of a ridge {(x), we
write first

B

}’IC:x +; byy — (ps - .0/} g‘:

ook p; (B ZZ 1
b 2\m /2| P+ —bn) 2+ d?

+ annéé[r—bn]]. (18)

and then average Eq. (18) over y:

Yol — (ps — po) g€

+ 21n%5[x]i|. (19)
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Now, again using the Fourier transformation, we find:

,(ﬂ_p, ﬁ ZE1'lnlf:x —m
i Tbhyr\m ) |2t P l

“Kolkd) coskxdk
| 2
- L YT ] (20)
In particular,
% pr (AN L
0) =——(— | |;In—. 21
£(0) 2b}'t<m) plec (21)

As one could expect, this value approximately I,/b
larger than {, from Eq. (17) ; for example, at = 1072
and b =2.4x10"2cm, { (0) ~1300 A. At smaller 7 the
ridge’s height { (0) grows up, its width [; decreases, and at
7 ~ 1072 the condition {’, <1 turns out to be violated. It
means that the linear equation (19) is no longer correct at
such a small tilt angles; instead of the term (%, we
should write y(t + {}){%. An analysis of that nonlinear
equation is more complicated, however one easy can see
that the solution { (x) loses its symmetry x — — x and at
4 =(p,/byt*)(h/m)* ~ 1 astripofthe facet@ =1 + (. =0
appears on the right slope of the ridge, which will look as
a terrace in this case. Note that even nonlinear macro-
scopical equations of that type become invalid at still
smaller 17, when [, ~d, ie. at © ~((p. — p,) ga*/y)'?
~3x107°. At such a small t strips with @ =0 take
almost all the surface area, and we return to the case of
zero tilt.

5. Effects of rotation in the long-range limit:
ring-shaped facets

At large scales, r>b, we may neglect the in-
homogeneous distribution of v, near vortices and con-
sider the superfluid as a normal liquid rotating with the
same angular velocity €, i.e. we may put v, — v. = 0. The
pressure 8p, in this case is given by usual expression

5p, =5 Q2R — pgL. (22)

For the surface of a tilted crystal the equilibrium equa-
tion looks therefore as

yre ﬁ " Q2R2 -
1+ -y + (s —p) | —— — 9l ) =0, (23)
with the solution in the form of usual parabolic meniscus
Q2R?
{={o+ (24)
2

for the central region and more complicated form near
the walls of the vessel.
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Coming back to the previous section, note that the
values of bulges calculated there should be measured,
strictly speaking, from the meniscus (24) . It means that
tilt angles in Egs. (16) , (20) include the slope of this
meniscus. As a result the parameters of hillocks and
ridges are somewhat different at different points in line
with changes of this slope. In particular, due to bending
of steps on such a surface (from Eq. (24), the steps curva-
ture k ~ Q%/g7), the hillocks forming a ridge turn with
respect to each other and eventually stop overlapping; in
other words, the ridges (16), (17) have some finite length
L in the y-direction, which can be estimated as L ~ [./I, k.
Numerically, at t ~ 1072, @ ~ I rad/s, L ~1cm. For
large crystals, Ry > L, one can expect the appearance of
ridges with different orientations in the x—y plane, corres-
ponding to different directions of the vortex lattice trans-
lation vectors. However, in order to find the shapes and
distribution of ridges on the whole surface in this case we
have to solve essentially two-dimentional and nonlinear
equations (see also the end of this section).

More interesting picture arises for zero tilt angle. In
this case the crystal surface usually consist of a circular
facet {' = 0 in its central region and a surface in the form
of convex meniscus, due to poor wetting of the vessel
walls (see e.g. Ref. [14], Fig. 5(a)). Let us consider the
effect of rotation on such a surface.

Instead of Eq. (7) , we have now

1d d Q*R?
- (Rdf ) +(p=p) (T . gc) =0, (25)

where f = ag + B + (7/6)|{'1%, {’ = d{/dR, { being meas-
ured from a reference level, which depend, in particular,
on £, on the total crystal volume in the vessel and on the
wetting angle. It is worth also to rewrite Eq. (25a) in the
form which is more convenient at ' # 0:

v 2p2
W + = E +(ps — po) (s—?i % QC) =0. (25b)
[ R 2

We see from Eqgs. (23), (25a) that due to rotation there is
a general tendency in favor of concave meniscus like Eq.
(24), with {" > 0. On the other hand, near the walls we
have (' < 0. But in this case, in contrast to common
situation, {' cannot just change its sign at some point.
Due to the singularity in the first term of Eq. (25a) , this
change lead to the formation of a facet. Therefore, at
sufficiently large Q we have, besides the central one, one
more, ring-shaped facet (Fig. 5b).

Let { = {, be the level of the initial facet, R, be its
equilibrium radius. There is a relation between these
quantities which can be found by integration of Eq. (25a)
over the facet area:

df Q?Rt gR% |
R1d;c,|n,+o+(Ps_ﬂ/)( 3 - -TIQL =0,

20+60°

Fig. 5. Splitting of a facet at fast rotation: (a) Q < Q_, (b)
Q=0.

or, substituting (df/d{’) |z, +0 = B({'/I{') = — B,

i Q*R}  gR,
. 26
(ps — p0) 8 B S

The second facet appears at some angular velocity Q.,
when (' first change its sign (at some R = R;). It is easy to
see that R, < R;. Indeed, assume for the moment that
R; = R,. In this case {(R) should have an inflection
pointat R, R, > R > R,, { (R) = { < {,. From Eq. (25b)
we have

2p3
ce B R

(ps — p.) 7 —oRk=0, el

and, comparing with Eq. (26), we arrive at {>¢,, in
contradiction with our assumptions. So, R; < R;.

We see that at Q = Q_ the initial facet splits in two
parts with {={,, R<R, and {={;, R3 <R <R,.
Assume that this splitting is a continuous transition, i.e.
at Q=0 {; =, and R; = R,. We may write then,
similar to Eq. (26) (but the first term is of opposite sign) :

B8R g%

(P« — p2) 8 3 tes)
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Now, combining Egs. (26) and (28) , we obtain

8p 1
o= : 29
\/(.Os —p) RiRy(R, —R,) @)

This expression reaches its minimum at R, = R,/2. We
have finally,

328
(ps—p) RI’

It is necessary to note here that in practice the facet
sizes are typically far from their equilibrium values. It
means that in real experiments most probably will be
observed metastable states of one or another type rather
than equilibrium facet.

As for the structures of curved parts of the crystal
surface at t = 0, their parameters will be defined by local
values of averaged (over r ~ b) {, which play the role of
effective tilt angle in this case. These parameters will
change very significantly from point to point, the bulges
forms become more complicated due to the steps curva-
ture, and only one feature seems to be clear at the
moment: the distribution of ridges and terraces will show
a hexagonal symmetry in accordance with the symmetry
of the vortex lattice.

Q.= (30)

6. Conclusion

We have shown that vortices in rotating superfluid
helium form various structures on the liquid—solid he-
lium interface. The sizes of some of these structures seem
to be large enough for direct optical observation. Indeed,
using modern experimental techniques [4], one can
measure a profile of such an interface with the space
resolution of the order of 300-500 A in the z-direction
and 0.02-0.03 mm in the x—y-plane. From the numerical
estimations of the sizes of ridges, given by Egs. (20), (21),
we see that there is a good chance to detect these struc-
tures optically at least at sufficiently fast rotation,
Q~ 1rad/s or faster, and low temperatures, T~0.1 K or
lower. One also can try to observe the ridges disintegra-
tion into separate hillocks, reducing Q and keeping the
temperature as low as possible, but such an experiment
looks rather difficult. In particular, for successful experi-
ments of this kind extremely low level of mechanical
vibrations is needed, due to very high mobilities of vicinal
interfaces at low temperatures. Unfortunately hillocks on
the basal plane turn out to be too small for optical
detection.

As for the observation of the facet splitting at high
rotation speeds, it seems to be much easier; at least,
in this case there is no need to keep extremely low
vibration level and highest space resolution. The most
favorable temperatures for this experiment are about

1.1-1.2 K, in the vicinity of the roughening transition
temperature Ty, where the values of § are very small [15]
and, as a result, the critical angular velocities Q. are not
too high.

In principle, Eq. (30) could be used for independent
determination of § at any temperature below Tg. How-
ever, in such experiments we need true equilibrium
conditions as well as when one measures the equilibrium
size of a facet (see Refs. [12, 14] ). As we already men-
tioned, typically in real experiments there is no chance to
achieve equilibrium facet size. The most realistic explana-
tion of this fact is based on strong asymmetry of the facets
kinetics — fast melting and very slow growth. Experi-
ments with rotating crystals provide a new possibility,
which was suggested by Rolley. One could try to obtain
the value of § from Eq. (26), measuring R; and (;
as functions of Q in the process when R; increase, (;
decrease (the facet melts) with increasing Q. This
possibility looks more promising than similar
method, when the whole crystal slowly melts without
rotation, but such measurements will be very sensi-
tive to mechanical vibrations. Note finally that while
using Eq. (26) one should remember that {; is
measured from a reference level z,, that depends
on Q. This dependence can be obtained from the condi-
tion that the crystal volume remains constant under
rotation:

R,

v =2rrJ. {°RdR = const. (31)
0

where {° = { + z,.

The facet height measured from the bottom of the
vessel will be {§ = {; + z,. Now, integrating Eq. (25) over
the whole surface and using Eq. (31), we obtain

28 Q2

= — P odiR. a(RE. - Rf) +const.  (32)
S L 1 L
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