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Abstract

 

—Various perturbation series are factorially divergent. The behavior of their high-order terms can be
found by Lipatov’s method, according to which they are determined by instanton configurations of appropriate 
functional integrals. When the Lipatov asymptotics is known and several lowest order terms of the perturbation 
series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms 
of the series. Summing it, one can solve (in a certain approximation) various strong-coupling problems. This
approach is demonstrated by determining the Gell-Mann–Low functions in 

 

ϕ

 

4

 

 theory, QED, and QCD for
arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and inter-
pretation of perturbation series is discussed.  Explicit derivations of  the Lipatov asymptotics   are presented
for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contribu-
tions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes
are described for a coupling constant of order unity and in the strong-coupling limit. An interpretation of
the Borel integral is given for “non-Borel-summable” series. High-order corrections to the Lipatov asymptotics
are discussed. 
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1. DYSON’S ARGUMENT:
IMPORTANT PERTURBATIVE SERIES 

HAVE ZERO RADIUS OF CONVERGENCE

Classical books on diagrammatic techniques [2–4]
describe the construction of diagram series as if they
were well defined. However, almost all important per-
turbation series are hopelessly divergent since they
have zero radii of convergence. The first argument to
this effect was given by Dyson  [5] with regard to quan-
tum electrodynamics. Here, it is reiterated by using
simpler examples.

Consider a Fermi gas with a delta-function interac-
tion 

 

g

 

δ

 

(

 

r

 

 – 

 

r

 

') and the corresponding perturbation series
in terms of the coupling constant

 

 g.

 

 Its radius of conver-
gence is determined by the distance from the origin to
the nearest singular point in the complex plane and can
be found as follows. In the case of a repulsive interac-
tion (

 

g

 

 > 0), the ground state of the system is a Fermi
liquid. When the interaction is attractive (

 

g 

 

< 0), the
Cooper instability leads to superconductivity (see
Fig. 1a). As

 

 g 

 

is varied, the ground state qualitatively
changes at 

 

g 

 

= 0. Thus, the nearest singular point is
located at the origin, and the convergence radius of the
series is zero.

An even simpler example is the energy spectrum of
a quantum particle in the one-dimensional anharmonic
potential

(1.1)

Whereas the system has well-defined energy levels

U x( ) x2 gx4.+=

 

when 

 

g 

 

> 0, these levels are metastable when

 

 g 

 

< 0 since
the particle can escape to infinity (see Fig. 1b). There-
fore, the perturbation series in terms of

 

 g 

 

is divergent
for any finite 

 

g

 

 as it can  be tested by  direct calculation 
of its coefficients. The calculation of the first 150 coef-
ficients of this series in [6] was the first demonstration of 
its divergence and gave possibility of its detailed study.

Zero radius of convergence looks “accidental” in
quantum-mechanical problems: it takes a place when
a potential of special form is taken and a “bad” definition
of coupling constant is chosen. However, zero radius
of convergence is encountered in all fundamental quan-
tum field theories with a single coupling constant.

Even though Dyson’s argument is unquestionable, it
was hushed up or decried for many years: the scienti-
fic community was not ready  to face the problem of the 
hopeless divergency of  perturbation series.

2. LIPATOV’S METHOD: 
QUANTITATIVE ESTIMATION OF DIVERGENCY 

        OF SERIES 

A further step was made in 1977, when Lipatov’s
method was proposed [7] as a tool for calculating 
high-order terms in perturbation series and making quan-
titative  estimates  for  its  divergence.  The  idea  of
the method is as follows. If a function 

 

F

 

(

 

g

 

) can be

 

(a)

Cooper instability

 

g

 

 Fermi liquid

(b) (c)

 

U

xg

 

 > 0

 

U

xg

 

 < 0

 

Fig. 1.

 

 Graphic illustration of Dyson’s argument.
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expanded into a power series  of 

 

g

 

,

(2.1)

then the coefficients 

 

F

 

N

 

 in the expansion can be deter-
mined as

(2.2)

where the contour 

 

C

 

 goes around the point 

 

g 

 

= 0 in the
complex plane. Rewriting the denominator as
exp{

 

−

 

(

 

N

 

 + 1)ln

 

g

 

}, for large 

 

N

 

 one may hope that the
saddle-point method can be applied to the resulting
exponential with a large exponent.

It is well known that the problems tractable by dia-
grammatic technique  can be reformulated in terms of
functional integrals of the form

(2.3)

with the expansion coefficients

(2.4)

Lipatov suggested seeking the saddle-point configura-
tion of (2.4) in 

 

g 

 

and 

 

ϕ

 

 simultaneously, rather than with
respect to

 

 g 

 

only. The desired configuration exists in all
cases of interest and is realized on a localized function

 

ϕ

 

(

 

x

 

) called 

 

instanton.

 

  It turns out that the saddle-point
approximation is always applicable   when 

 

N

 

 is large
irrespective of its applicability to integral (2.3). This

F g( ) FNgN ,
N 0=

∞

∑=

FN
gd

2πi
--------F g( )

gN 1+
-----------,

C

∫=

Z g( ) Dϕ S0 ϕ{ }– gSint ϕ{ }–( ),exp∫=

ZN
gd

2πig
------------

C

∫=

× Dϕ S0 ϕ{ }– gSint ϕ{ }– N gln–( ).exp∫

 

finding has important consequences: whereas func-
tional integrals cannot generally be calculated exactly,
they can always be calculated in the saddle-point
approximation.

Once expansion coefficients are known for a functi-
onal integral, expansions of Green functions, vertices,
tc., can be found, because factorial series can be treated
as easily as finite expressions, due to existence of
simple algebra (see [8, Section 5.3]). Generally, the Lipa- 
tov asymtotics of the expansion coefficients for any quantity

 

F

 

(

 

g

 

) is

(2.5)

where 

 

Γ

 

(

 

x

 

) is the gamma function and

 

 a

 

,

 

 b

 

, and

 

 c

 

 are
parameters depending on the specific problem under
analysis. In the framework of a particular theory,

 

 a 

 

is a
universal constant, 

 

b

 

 is a parameter depending on 

 

F

 

(

 

g

 

),
and 

 

c 

 

depends on external coordinates or momenta.
When the Lipatov asymptotic form is known and a

few lowest order terms of a perturbation series are
found by direct calculation of diagrams, one can gain
insight into the behavior of the remaining terms of the
series and perform their summation to solve various
strong-coupling problems in a certain approximation.
The most important consequence is the possibility of
finding the Gell-Mann–Low function 

 

β

 

(g), which
determines the effective coupling constant g(L) as a
function of length scale:

(2.6)

In relativistic theories, the first term in the expansion of
β(g) is quadratic, β(g) = β2g2 + …. For a small g,
Eq. (2.6) yields the well-known result [3, 9, 10]

(2.7)

where g0 is the value of g(L) on a length scale L0. In
both quantum electrodynamics (QED) and ϕ4 theory,
the constant β2 is positive, and g(L) is an increasing
function at small L (see Fig. 2). In quantum chromody-
namics (QCD), the sign of β2 is negative. Accordingly,
the interaction between quarks and gluons is weak at
small L (asymptotic freedom), while its increase with L
demonstrates a tendency toward confinement (see
Fig. 2). One problem of primary importance is extension
of (2.7) to intermediate and strong coupling. Accor-
ding to the classification put forward in [2] (for \beta_2>0),  
the function g(L) tends to a constant if β(g) has a zero at a
finite g and continues to increase ad infinitum, as L 0,
if β(g) ∝ gα with α ≤ 1. If β(g) ∝ gα with α > 1, then
two interpretations are plausible. On the one hand,
assuming finite interaction at long distances, one would
have a self-contradictory theory: the effective charge

FN cΓ N b+( )aN ,=

dg

d L2ln
--------------– β g( ).=

g L( )
g0

1 β2g0 L2/L0
2( )ln–

--------------------------------------------,=

?

QCD

QED, ϕ4

g

1

L

?

Fig. 2. Effective coupling versus length scale in ϕ4 theory,
QED, and QCD.
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g(L) goes to infinity at a finite Lc (Landau pole), while
the function g(L) is undefined at L < Lc . On the other
hand, a field theory interpreted as a continuum limit of
lattice models is “trivial” since the interaction vanishes
as L  ∞ (“zero-charge” property). The first attempts
to determine the Gell-Mann–Low function in ϕ4 theory
were made in [11–13].

Originally developed for scalar theories (such as
ϕ4 [7]), Lipatov’s method was extended to vector
fields [14], fermion problems [15], scalar electrody-
namics [16], and the Yang–Mills theories [17, 18], as
well as to a variety of problems in quantum mechanics
(see [19] and reviews in [20, 21]). Next in order were its
applications to theories of practical interest, QED [22, 23]
and QCD [24–26].

In all theories mentioned above, factorially diver-
gent series were obtained. Assuming that divergent
series are “the devil’s invention,” one should admit that
the Creator has also taken part: description of physical
reality leads to divergent series expansions with strik-
ing regularity.

3. INTERPRETATION
OF PERTURBATION SERIES: 

A SURVEY OF THE MATHEMATICAL THEORY 
OF DIVERGENT SERIES

The modern status of divergent series suggests that
techniques for manipulating them should be included in
a minimum syllabus for graduate students in theoretical
physics. However, the theory of divergent series is
almost unknown to physicists, because the correspond-
ing parts of standard university courses in calculus date
back to the mid-nineteenth century, when divergent
series were virtually banished from mathematics. The
discussion that follows provides a brief review of the
mathematical theory of divergent series [27].

3.1. Can We Deal with Divergent Series? 

Dealing with series of the form

(3.1)

for the first time, one may be tempted to treat them as if
they were finite sums. However, this is incorrect in the
general case, because a series can be treated as a finite
sum only if it is absolutely convergent [28], i.e.,

(3.2)

If the series is convergent, but no absolutely, as the
the alternating harmonic series,

(3.3)

a0 a1+   +  a 2 a 3 … a N … + + + +

a0 a1 a2 a3 … aN … ∞.<+ + + + + +

1 1
2
---– 1

3
--- 1

4
---– 1

5
--- …,–+ +

 

one cannot permute  its terms in an arbitrary manner:
by Riemann’s theorem, not absolutely convergent
series can be rearranged to converge to any specified
sum [28]. Indeed, the sum of a convergent series is
defined as the limit of its partial sums, and any result
can be obtained by shifting negative terms rightwards
and positive terms leftwards, or vice versa.

Expectably, the analysis of divergent series is even
more complicated because of a greater number of for-
bidden operations on them:

(a) obviously, terms cannot be permuted;

(b) terms cannot be grouped either, e.g.,

(3.4)

(c) a series cannot be “padded” by inserting zero
terms,

(3.5)

Now  we can formulate the basic idea of the theory of di-
vergent series: in principle, they can be consistently ma-
nipulated if one follows rules that are much more strin-
gent than those for operations on finite sums or conver-
gent series.

 

3.2. Euler’s Principle 

 

What are the new rules to be followed? A prelimi-
nary answer to this question was given by L. Euler, who
was the true pioneer in developing the theory of
divergent series. Euler ruled out the use of number
series (3.1) and expansions over arbitrary basis func-
tions, 

 

1

 

 

(3.6)

and emphasized a special role played by power series

(3.7)

Power series expansions are special due to existence of  the
natural numbering of  terms, information of which is preser-
ved under permutations or other operations. As a re-
sult, power series can be treated as finite sums. It is clear 
that forbidden operations are ruled out automatically: 
if number series (3.1) is interpreted as the limit of power
series (3.7) as 

 

x

 

  1,  then  any  permutation, pad-

 

1

 

This discussion concerns to divergent series only. Convergent
expansions such as (3.6) (e.g., over an orthogonal basis) are obvi-
ously admissible.

1 1– 1 1– 1 1– … 1 1–( )≠ 1 1–( )+ + + +

+ 1 1–( ) … 1 1– 1+( ) 1– 1+( )+ +≠+

+ 1– 1+( ) …;+

a0 a1 a2 a3 …+ + + +

≠ a0 0 a1 0 a2 0 a3 0 … .+ + + + + + + +

a0 f 0 x( )  a1 f 1 x( )  a2 f 2 x( )  … aN f N x( )  …,+ + + + +

a0 a1x a2x2 a3x3 … aN xN ….+ + + + + +
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ding with zero terms, or association leads to a series dif-
ferent from the initial one:

(3.8)

(3.9)

(3.10)

The fundamental reason for validity of Euler’s principle 
lies in fact that a power series is absolutely convergent 
within its circle of convergence and defines an analytic 
function that can be continued outside its domain of con-
vergence. Accordingly,  free manipulations of power
series are admissible either as operations on absolutely
convergent series or by the principle of analytic contin-
uation. However, an analytic function may have several
branches, and information about them is lost when
divergent series are employed. Therefore, Euler’s
approach is not complete, and its application may lead
to poorly defined expressions requiring correct inter-
pretation. As a consequence, its rigorous mathematical
substantiation is hampered by difficult problems. Gene-
rally, constructive results in the theory of divergent se-
ries correspond to the partial proofs of Euler’s principle
under different restrictive assumptions [27]. It looks that
this principle is valid in the entire parameter spa-
ce spanned by the coefficients of a series except for a set
of measure zero, where it is valid only when the defini-
tion of the sum of the series is appropriately general-
ized. The excluded set has a complicated structure and
is difficult to specify by proving a finite number of
theorems. For this reason, Euler’s principle cannot be
adopted in modern mathematics without reservation.
However, it is not rejected either, because it does not
seem to be disproved by any known fact.

Basically, Euler’s principle is consistent with com-
mon practice in theoretical physics. It is commonly
believed that formal manipulations of power series on a
“symbolic” level cannot lead to results that are definitely
incorrect even if divergent series are used in intermedi-
ate calculations. Moreover, ill-defined expressions do
not present principal problem, since their correct
interpretation can be found from physical consider-
ations by applying various rules for avoiding singulari-
ties, which are so skillfully devised by physicists. When
applying this approach, one should follow two rules:
never substitute the numerical values of 

 

x 

 

before the
series is transformed into a convergent one and never
perform Taylor  expansions in the clearly   singular
points.

With regard to the latter requirement, note that the
series used in quantum field theories have zero radii of

a1 a0 a3 a2 …+ + + +

a1 a0x a3x2 a2x3…,+ + +

a0 0 a1 0 a2 0 a3 …+ + + + + + +

a0 0 x a1x2 0 x3 a2x4+⋅+ +⋅+

+ 0 x5 a3x6…,+⋅

a0 a1+( ) a2 a3+( ) a4 a5+( ) …+ + +

a0 a1+( ) a2 a3+( )x a4 a5+( )x2 ….+ + +

convergence, but arise from functional integral (2.3) as
a result of a regular expansion of the exponential in
terms of g and a subsequent (incorrect) interchange of
summation and integration. In essence, an aim of the 
summation theory is a reverse permutation, which can 
be performed "in another place”, providing a freedom of 
formal manipulations.

It may seem that the restriction to power series
expansions is very stringent. Actually, this is not so,
because a number series may arise in a physical appli-
cation only when some particular values are assigned to
parameters of the model. Usually, a power series in at 
least one parameter can be obtained by returning to the ge-
neral formulation of the problem or by generalizing 
the model. This is frequently done by using relatively sim-
ple tricks. For example, if the potential energy in the
Schrödinger equation is treated as a perturbation, then
the resulting expansion is not a power series. However,
if U(x) is replaced with gU(x) before performing the
series expansion (with a view to setting g  1 as a
final step), then a power series in g will be obtained.

Now, a few words should be said about number 
series of type (3.1). In principle, they can be consistently 
manipulated [27] if (3.1) is considered as a symbolic re-
presentation that cannot be identified with a conventional 
sum (otherwise, one is led to paradoxes commonly dis-
cussed in textbooks [28]). Manipulations of this kind 
are performed according to ad hoc rules known only 
to specialists. In their  constructive part, these rules can
be derived from  Euler’s principle if number series (3.1)
is identified with power series (3.7) in the limit of
x  1. Such identification can be always done formally, 
but one should be sure that series (3.1) has not been modi-
fied by rearranging, discarding zero terms, etc. Since the
fulfillment of this requirement cannot be reliably
checked unless the number series is derived from a
known power series, number series per se are of no
practical importance.

As an implementation of Euler’s approach, consider 
the well-known Borel transformation: dividing and mul-
tiplying each term of a series by N!, introducing the inte-
gral representation of the gamma function, and interchan-
ging summation and integration, one obtains

(3.11)

The power series on the right-hand side has factorially
improved convergence and defines the Borel transform
 B(z) of F(g):

(3.12)

F g( ) FNgN

N 0=

∞

∑ FN

N!
------ xxNe x– gNd

0

∞

∫
N 0=

∞

∑= =

=  xe x– FN

N!
------ gx( )N .

N 0=

∞

∑d

0

∞

∫

F g( ) xe x– B gx( ), B z( )d

0

∞

∫
FN

N!
------zN .

N 0=

∞

∑= =
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The Borel transformation provides a natural pro-
cedure  for  summing factorially divergent series  in 
quantum field theories.

3.3. How Should We Define the Sum of a Series? 

Now, let us discuss the modern approach to the
problem. An “ideal” program of formalization can be
represented as follows.

1. Formulate a definition of the sum S of a series that
is equivalent to the conventional definition in the case
of a convergent series.

2. Consider a class L of transformations of one
series into another that leaves the sum invariant:

(3.13)

3. Verify that class L is a sufficiently wide and can
be efficiently used to transform convergent series into 
divergent ones and vice versa.

4. Specify the class L; it sets rules for manipulating
series expansions without checking their convergence.

Has this program ever been implemented in modern
mathematics? In fact, it has been, to the extent that a
subclass of L, sufficiently wide to solve practical prob-
lems, has been specified. However, the theory cannot be
presented in the elegant form outlined above. Indeed,
difficulties arise even in implementing the first step: no
definition of a sum equally suited to any particular
problem is available. Summation methods for strongly
divergent series are not instrumental as applied to
weakly divergent ones, and vice versa. For this reason,
a laissez-faire approach is adopted: any definition of a
sum is formally admissible, and mutual consistency of
different definitions is the only subject to be analyzed
on an abstract mathematical level. The choice of a par-
ticular definition is left to the user. This attitude of
mathematicians is somewhat doubtful: if the user knows
the definition of the sum, he can make the rest without
problem. However, this attitude is sufficiently groun-
ded (see Section 7).

In principle, it is known how these difficulties
may be resolved. Recall how the temperature stan-
dard is introduced in physics. Since no temperature mea-
surement method is universally applicable, several tem-
perature standards are introduced (for high, low,
ultralow etc. temperatures) that lead to identical results
in the temperature regions where they overlap. An ana-
logous approach can be adopted in the theory of diver-
gent series, where a variety of “good” (mutually consis-
tent) summation methods are available:2 a combined de-
finition of sum can be accepted by using these methods. 
Since good methods usually based on Euler’s principle, 

2 Note that there are also a lot of “bad” methods, which contra-
dict to each other.

a0 a1 a2 a3 … aN …+ + + + + +  S=

b0 b1 b2 b3 … bN …+ + + + + + S.=

this approach reverts us to this principle, but on a high-
er formal level and with certain restrictions.

As examples, consider the following possible defini-
tions of sum.

Euler’s definition. If power series (3.7) is conver-
gent at small x, then it defines a regular function f(x)
whose analytic continuation is the sum of series (3.7)
outside its circle of convergence.

In physical applications, this definition is adopted
without reservation. As noted above, it is not complete,
because the choice of a branch of the analytic function
remains an open question. However, when this defini-
tion is meaningful, all calculations can be performed
by using only convergent series, and the uncertainty is
thus eliminated. A theory of divergent series is really
necessary when the radius of convergence is zero, i.e.,
when Euler’s definition is meaningless.

Borel’s definition (applicable in the latter case as
well). The sum of series (3.11) is given by (3.12). This
definition agrees with other definitions based on Euler’s
principle and satisfies all necessary requirements.

3.4. Asymptotic Interpretation of Divergent Series 

Modern theory of divergent series has “two sources
and two parts.” The foregoing discussion deals with the
essentials of the summation theory presented in its com-
plete form by Borel [29]. More widely known is the
asymptotic interpretation of divergent series proposed
by Poincaré [30]. A power series expansion of a func-
tion f(x) is asymptotic if

(3.14)

where

(3.15)

i.e., if f(x) is accurately approximated by a truncated
series for sufficiently small x. The asymptotic interpretation 
is constructive only if the problem at hand involves a
small parameter. However, in such case, it is the most
convinient: one need not sum any high-order terms and 
even should not be interested in their behavior. Ano-
ther advantage lies in the possibility of constructing asy-
mpotic expansion (3.6) over arbitrary basis functions, pro-
vided that each fn(x) approaches zero faster than does
fn – 1(x).3 

There is no one-to-one correspondence between
functions and asymptotic power series expansions,
because f(x) can be modified by adding a function for
which all coefficients in (3.14) vanish, such as

3 If x is not small, then expansion (3.6), in contrast to (3.7), does not 
admit any meaningful interpretation at all. However, this is not ve-
ry actual: what sense is in the use of expansion that is not regular and 
does not involve any small parameter?

f x( ) a0 a1x a2x2 … aN xN RN x( ),+ + + + +=

RN x( ) O xN 1+( ), x 0,=
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exp(−a/x). When a series is convergent at small x, this
uncertainty is eliminated by imposing the condition of
analyticity at x = 0. However, this cannot be done for 
series with zero radius of convergence. At first glance,
this would imply that a divergent series cannot be
assigned any particular sum.

Actually, this is not true. Asymptotic equality means
that the partial sum a0 + … + aNxN “resembles” the
function f(x) up to some remainder term RN(x). It is no
surprise that many functions meet this requirement
within the prescribed accuracy. Their variety can be
reduced    by diminishing  R N(x), so that ultimately a
single function remains. In fact, this is exactly what
should be done: when the remainder term is subject to
certain constraints, the functions and the asymptotic
series expansions are in one-to-one correspondence.
Namely, it suffices to replace standard condition (3.15)
with the so-called strong asymptotic condition

(3.16)

where G is a region containing the point x = 0 and CN are
the specially chosen coefficients. The single function 
that satisfies the strong asymptotic condition and "resem-
bles” an asymptotic series “most closely" can be natural-
ly accepted as its sum. By Watson’s theorem on Bo-

RN x( ) CN x N 1+ , x< G,∈

rel summability [27], this unique function is given by the
Borel integral in (3.12) for a broad class of divergent
series. Thus, both summation theory and asymptotic
theory naturally lead one to adopt Borel’s sum as the
natural sum of a divergent series.

The discussion above clearly solves the problem of
nonperturbative contributions, such as exp(–a/x), which
is frequently brought up as an argument against the use
of perturbation series. When Borel’s definition is
adopted,  such terms should not be added  to Borel in-
tegral (3.12). Formal manipulations of power series
expansions will not lead to terms of this kind if Taylor
expansions are not performed in the clearly  singular
points.

3.5. Physical Arguments 

Now, let us discuss physical arguments in support of
the interpretation of perturbation series in the Borel
sense.

Suppose that power series (3.7) has a finite radius of
convergence. Then, the corresponding analytic function
f(x) has singular points A, B, C, … at finite distances
from the origin (see Fig. 3a). In this case, it can be
shown that Borel’s definition of a sum is equivalent to
Euler’s, which is definitely suitable for physical appli-
cations.

Let the singular point A approaches to the origin.  If the
point A is a pole or power-like singularity, the coeffici- 
ents of the series diverge, and the expansion becomes 
meaningless when the convergence radius tends to zero.
However, there exist singularities that can be moved to
the origin without causing divergence of the coeffi-
cients: these are branch points with exponentially
decreasing jump at the cut. In particular,  Lipatov
asymptotic form (2.5) is associated with the following
jump in F(g) at the cut [31, 32]:4 

(3.17)

Both Borel’s and Euler’s sums vary with radius of con-
vergence rc , remaining equal. When rc = 0, Euler’s sum
is meaningless, whereas Borel’s sum corresponds to
Euler’s definition extended by continuity (see Fig. 3b).

The limit of rc  0 is amenable to a straightfor-
ward physical interpretation. Consider the Fermi gas
with a delta-function interaction discussed in Section 1.
The Cooper instability occurs for arbitrary g < 0 only at
zero temperature. As the temperature T is raised to a
finite value, the instability domain shifts to negative g
by an amount gc determined by a Bardeen–Cooper–

4 Correspondence between (3.17) and (2.5) can be established by
calculating the jump at the cut for Borel’s sum of a series
with expansion coefficients having asymptotic form (2.5). Alter-
natively, one can write Cauchy’s integral formula for a point g
lying in the domain of analyticity and deform the integration con-
tour so that it goes around the cut. Then, the jump at the cut gi- 
ven by (3.17) will lead to asymptotic expression (2.5).

∆F g( ) 2πic
1

ag
------ 

 
b 1

ag
------– 

  .exp=

(a) B

C

A

x

rc

rc

S

SE

(b)

SB

Fig. 3. (a) Convergence radius rc decreases as singular point
A approaches the origin. (b) Euler sum SE equals Borel sum
SB when rc is finite; when rc = 0, the former is meaningless,
whereas the latter extends the former by continuity.
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Schriffer-like relation, T ∝ exp{–const/gc}. The corre-
sponding perturbation series has a finite convergence
radius gc , which tends to zero with decreasing tempera-
ture. Generally, the value of some quantity calculated at
strictly zero temperature differs from its value obtain-
ed in the limit T  0. However, the physically meani-
ngful result is that obtained forT  0.  Thus, the value
at T = 0 should be always defined by continuous exten-
sion and can be obtained by Borel summation.

4. LIPATOV ASYMPTOTIC FORMS
FOR SPECIFIC MODELS

The calculation of Lipatov asymptotic form (2.5) is
tedious if all parameters a, b, and c should be found.
As for its functional form, it can be easily found by per-
forming a formal saddle-point expansion and separating 
the dependence on N. In what follows, calculations of 
this kind are performed for several fundamental models 
in theoretical physics.

4.1. ϕ4 Theory 

To begin with, consider the n-component ϕ4 theory.
The corresponding action is

(4.1.1)

(d is the space dimension). Functional integrals of the
form

(4.1.2)

define M-point Green functions,

(4.1.3)

which are diagrammatically represented by M-legged
graphs. Hereinafter, integral (4.1.2) is written in com-
pact form as

(4.1.4)

and normalized to an analogous integral with M = 0 and

g = 0, with the factor   included  into  Dϕ. 
Actually, the explicit form of the action is not essential
in  the  present analysis,  and only its homogeneity 
properties are used to write

(4.1.5)

S g ϕ,{ } ddx
1
2
--- ∂µϕα x( )[ ]2 1

2
---m2 ϕα

2 x( )
α 1=

n

∑+
α 1=

n

∑




∫=

+ 
1
4
---g ϕα

2 x( )
α 1=

n

∑ 
 
 

2





ZM g( ) Dϕϕα1
x1( )ϕα2

x2( )…ϕαM
xM( )∫=

× S g ϕ,{ }–( )exp

GM g( )
ZM g( )
Z0 g( )
---------------,=

Z g( ) Dϕϕ 1( )…ϕ M( ) S g ϕ,{ }–( ),exp∫=

Z0
–1 0( )

S g ϕ,{ } S ϕ{ }
g

-------------, where ϕ φ
g

-------.= =

First, consider a finite-dimensional integral having the
form of (4.1.4) with Dϕ = dϕ1dϕ2…dϕm and define

(4.1.6)

This notation makes it possible to write any expression
in a form analogous to the corresponding one-dimen-
sional integral. In the infinite-dimensional limit,  S'{φ}
and S''{φ} become the first and second functional deriv-
atives, interpreted as a vector and linear operator,
respectively.

According to Section 2, the expansion coefficients
are

(4.1.7)

and the saddle-point conditions have the form

(4.1.8)

The expansion of the exponent in (4.1.7) to quadratic
terms in δφ = φ – φc and δg = g – gc is

(4.1.9)

Since

(4.1.10)

the origin of δϕ can be shifted to obtain

(4.1.11)

where δg = igct, because the saddle point is passed in
the vertical direction. The Gaussian integration yields

(4.1.12)

i.e., Lipatov asymptotic form (2.5) is recovered.

φ

φ1

φ2

·

φm

, S' φ{ }

∂S/∂φ1

∂S/∂φ2

…
∂S/∂φm

,= =

S'' φ{ } ∂2S
∂φi∂φ j

---------------- .=

ZN
gd

2πig
------------ Dϕϕ 1( )…ϕ M( )∫

C

∫°=

× S φ{ }
g

-------------– N gln– 
  ,exp

S' φc{ } 0, gc

S φc{ }
N

--------------.= =

N– N gc
N
2
----

δφ S'' φc{ }δφ,( )
S φc{ }

--------------------------------------–
N

2gc
2

-------- δg( ).2–ln–

δφ gc δϕ δg
2gc
--------ϕc+ 

  , δϕ ϕ ϕc,–= =

ZN e N– gc
N– M /2– td

2π
------

∞–

∞

∫ Dϕφc
1( )…φc

M( )∫=

× 1
2
--- δϕ S'' φc{ }δϕ,( )–

N
2
----t2+ 

  ,exp

ZN
const

det S'' φc{ }[ ]–
-------------------------------------S φc{ } N– Γ N

M
2
-----+ 

  ;=
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The result given by (4.1.12) is independent of m,
remaining valid as m  ∞, i.e., in the functional-inte-
gral limit. However, any realistic functional integral
contains zero modes associated with the symmetry of
action under a continuous group defined by the operator

, S{φ} = S{ φ}. If φc is an instanton (i.e., S'{φc} = 0),

then so is φc (S'{ φc} = 0). By the continuity of the

group operation, there exists an operator  that is arbi-

trarily close to the identity operator,  = 1 + � .

It is easy to see  that       \phi_c                  is the eigenvector of the ope-
rator S''{φc} associated with its zero eigenvalue. There-
fore, det[S''{φc}] = 0, and expression (4.1.12) is diver-
gent. However, its divergence is spurious, being related
with inapplicability of the Gaussian approximation to
integrals over zero modes.

To calculate  integrals  of this kind correctly,  collec-
tive variables λi are formally defined as functionals of an
arbitrary  field  configuration,   λ i = fi{ϕ}.   Thus ,  the
"center"   x 0 of an instanton can be defined by the rela-
tion

(4.1.13)

giving an example for definition of collective variable 

(4.1.14)

The integration over collective variables is introduc-
ed by inserting the following partition of unity into the 
integrand in (4.1.11):

(4.1.15)

where fi{ϕ} can be defined as homogeneous functionals
of ϕ of degree zero5 (cf. (4.1.14)). If the arguments of
the delta functions in (4.1.15) are linearized in the
neighborhood of a saddle-point configuration,

(4.1.16)

and the instanton is chosen so that λ i – fi{φc} = 0 (e.g.,
using a solution that is symmetric about the point x = x0
in (4.1.14)), then φc is a function of λi , i.e., φc ≡ φλ . Per-

5 The result is actually independent of the particular form of the
functionals [33], and only their linear independence is essential.

L̂ L̂

L̂ L̂

L̂

L̂� T̂

T̂  

ddxϕ4 x( ) x x0–( )∫ 0,=

x0

ddxϕ4 x( )x∫
ddxϕ4 x( )∫

-----------------------------.=

1 λiδ λi f i ϕ{ }–( ),d∫
i 1=

r

∏=

1 λiδ λi f i ϕc{ }– f i' ϕc{ } δϕ,( )–( )d∫
i 1=

r

∏=

=  λiδ λi f i φc{ }– gc f i' φc{ } δϕ,( )–( ),d∫
i 1=

r

∏

form a linear change of variables δϕ  δϕ with

det  = 1 to diagonalize the matrix S''{φc} and set

(4.1.17)

where the r variables (denoted by the tilde) that corre-
spond to the zero eigenvalues of S''{φc} and actually do
not contribute to the exponential in (4.1.11) are factored
out. Substituting (4.1.16) and (4.1.17) into (4.1.11),
removing the delta functions by performing integration
in δ , and calculating the integral in D'ϕ, we obtain

(4.1.18)

(4.1.19)

where f '{φc} is the operator defined by the matrix con-
sisting of the columns {φc}, and the subscripts P and
P' denote projections onto the subspace spanned by the
zero modes and its complement, respectively.6 The
ultraviolet divergences that arise when the constant c is
calculated are eliminated by conventional renormaliza-
tion of mass and charge. A general renormalization
scheme of this kind was developed by Brezin and Parisi
(see [8, 34]). Specific values of the parameters
in (4.1.18) can be found in [7, 14, 34, 35], and the most
general formal results were presented in [36–38].

According to (4.1.18), each degree of freedom asso-
ciated with a zero mode contributes 1/2 to the argument
of the gamma function. This resembles the classical
equipartition law and a more careful consideration
reveals a direct analogy. Indeed, the conventional parti-
tion function Z is a configuration-space integral of
exp(–H/T). As the number rosc of oscillatory degrees of
freedom increases by unity, Z changes to ZT1/2 and a
corresponding 1/2 is added to specific heat [39]. Inte-
gral (4.1.4) is dominated by the exponential
exp(−S{φ}/g), and the coupling constant g plays the
role of temperature. An increase by unity in the number
r of zero modes corresponds to a decrease by unity in
rosc and change from Z to Zg–1/2. To calculate the Lipa-
tov asymptotic form, the factor g–1/2 is estimated at the
saddle point gc ~ 1/N (see (4.1.8)), ZN is replaced by

6 In some cases, when det[f '{φc}]P depends on collective variables, it
should be factored into the integral in dλ i .

Ŝ

Ŝ

Dϕ D'ϕ dϕ̃i,
i 1=

r

∏=

ϕ̃i

ZN cS0
N– Γ N

M r+
2

-------------+ 
  ,=

S0 S φc{ },=

c
S0

M r+( )/2–

2π( )1 r/2+
---------------------- detS'' 0{ }

det S'' φc{ }[ ]P'

--------------------------------–
1

det f ' φc{ }[ ]P

-------------------------------=

× λiφλ
1( )…φλ

M( ),d
i 1=

r

∏∫

f i'
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ZNN1/2, and 1/2 is added to the argument of the gamma
function. In ϕ4 theory with d < 4, the total number of
zero modes is r = d + n – 1, including d instanton trans-
lations and n – 1 instanton rotations in a vector space.
In a four-dimensional massless theory, there also exists
a dilatation mode, corresponding to  variation of 
the instanton radius and related with scale invariance.

The equipartition law may be violated in the
presence of soft modes  related   with approximate
symmetries: some degrees of freedom resemble zero
modes in the first approximation (see Fig. 4a), but a
more accurate analysis shows that they correspond to
motion  in a slowly varying potential (Fig. 4b), which
may have a nonanalytic minimum (Fig. 4c).  Evidently,
the contribution of such a mode to the argument of the 
gamma-function is neither zero nor 1/2.

The problem arising in the presence of soft modes
is that the instanton φc is only an approximate solution
of the equation S'{φ}= 0, while the  exact solution may 
not exist at all. Accordingly, the linear terms in the expa-
nsion of S{φ } in powers of δφ should be accurately
eliminated. The collective variable characterizing the
location  in a slowly varying potential (see Fig. 4b) can 
be formally defined as a functional of an arbitrary field
configuration: z = f{φ}. An idea is to seek extremum
of the action  under the constraint
f{φ} = const (i.e., for a constant z) and then to integrate
over z. Correspondingly, the instanton is determined by
the equation

, (4.1.20)

where µ is a Lagrange multiplier, and the integration
over z is introduced  by inserting the following partition 
of unity into the functional integral:

(4.1.21)

Using the condition z = f{φc} to fix an arbitrariness in the 
choice of an instanton, one obtains

(4.1.22)

and the linear in δφ terms in the exponential are eli-
minated by a delta function due to  condition (4.1.20).
Since φc is a function of z, integration with respect to
Dϕ results in a nontrivial integral in z, which corre-
sponds to the motion in a slowly varying potential

S' φc{ } µ f ' φc{ }– 0=

1 zδ z f φ{ }–( )d∫=

=  zδ z f φc{ }– f ' φc{ } δφ,( )–( ).d∫

Z g( ) Dϕϕ 1( )…ϕ M( )∫=

×
S φc{ } S' φc{ } δφ,( ) 1

2
--- δφ S'' φc{ }δφ,( )+ +

g
---------------------------------------------------------------------------------------------------–

    
 
 
 
 

exp

× zδ f ' φc{ } δφ,( )–( ),d∫

(Fig. 4b). Note that the transformations performed
in (4.1.20)–(4.1.22) are not restrictive, and any degree
of freedom can be treated as a soft mode. However, this
has a sense only if the validity of the Gaussian ap-
proximation is questionable.

Examples of soft modes are the dilatations in the
massive four-dimensional or (4 – �)-dimensional ϕ4

theory [37, 38] and the variation of the distance be-
tween elementary instantons in a two-instanton configura-
tion (see Sections 4.4 and 9). The analysis above shows that,
generally, the shift b in the argument of the gamma fun-
ction in (2.5) includes contributions of external lines (M/2),
zero modes (r/2),  and  the additional contribution  ν  rela-
ted to soft modes.

4.2. Quantum Electrodynamics 

The simplest functional integral in quantum electro-
dynamics (vacuum integral) has the form

(4.2.1)

where Aν is the vector potential, and ,  ψ denote fermi-
onic fields constructed with the use of Grassmanian va-
riables. The latter are abstract quantities for which formal
algebraic operations are defined [40, 41], and the standard
Lipatov method cannot be applied directly when they en- 
ter to an exponential. A remedy can be found [15] by noting
that the action is quadratic in the fermionic  fields,  while  cal-
culation of the Gaussian integral (being one of the standard 

Z DADψDψ d4x
1
4
--- ∂µAν ∂νAµ–( )2∫–





exp∫=

---+ ψ iγ ν∂ν m– eγ νAν+( )ψ




,

ψ

(a)

(b)

(c)

Fig. 4. Soft mode looks as zero mode in the first approxima-
tion (a) and corresponds to motion in a slowly varying potential 
in a more detailed consideration (b);  (c) the potential may have 
a nonanalytic minimum.
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operations in the Grassmanian algebra) gives the deter- 
minant of the corresponding quadratic form:

(4.2.2)

If det(…) is represented as exp{logdet(…)}, then the
resulting effective action contains only the vector
potential Aν  and can be treated by Lipatov’s method.

The determinant of an operator is too difficult to be
used constructively, and considerable effort has been
applied to reduce it to a tractable form (see [22, 23]). The
difficulty consisted in establishing  the general properti-
es of a saddle-point configuration when no tractable
expression for effective action was available [22]. It
was found that the saddle-point value of eAν(x) is large.
Accordingly, one can make use of the asymptotic form
of the determinant as e  i∞ since the fastest growth
corresponds to a pure imaginary e [20]:

(4.2.3)

Expression (4.2.3) is not gauge invariant. It is valid only
in a restricted set of gauges for which the length scale of 
vector-potential variation is comparable to that of the phys-
ical electromagnetic field, which is treated as semiclas-
sical.7 Actually, these gauges are close to the Lorentz
gauge, as can be shown by considering configurations
characterized by high symmetry [20, 23].

Substituting (4.2.3) into (4.2.2), one obtains the
functional integral containing the effective action

(4.2.4)

for which asymptotic behavior of perturbation theory can
be found in the saddle-point approximation. The struc-
ture of the asymptotics is determined by the homoge-
neity properties of the action, which are analogous to
those in ϕ4 theory with g2 used as a coupling constant.
According to Section 4.1, the general term of the

asymptotics has the form c Γ(N + b)g2N, where S0 is
an instanton action. In fact, the series expansion is de-
veloped in  arbitrary (and not only even) powers
of g, and the substitution N  N/2 leads to

7 The general scheme for deriving expressions of type  (4.2.3) is 
illustrated in Section 4.3 by using a simpler example.

Z DAdet iγ ν∂ν m– eγ νAν+( )∫=

× 1
4
--- d4x ∂µAν ∂νAµ–( )2∫–

 
 
 

exp .

det iγ ν∂ν m– eγ νAν+( )

=  
e4

12π2
----------- d4x Aν

2( )2

∫ 
 
 

.exp

Seff A{ } = d4x
1
4
--- ∂µAν ∂νAµ–( )2 4

3
---g2 Aν

2( )2
–

 
 
 

,∫

S0
N–

c Γ(N/2 + b)gN as the Nth-order contribution. To 
justify this formal substitution, we note that the direct
expansion  in powers of the last term in (4.2.4) is not cor-
rect, because the functional integration would involve
configurations for which (4.2.4) is not valid. Calculation

should be performed by the saddle-point method, 
which yields a continuous function of N, and the fact
that this function should  be taken at integer or half-
integer points is considered as an external condition.

By using the value of the instanton action, the coef-
ficients of high-order terms in the expansion of (4.2.1)
are expressed as follows [14, 15]:

(4.2.5)

Here, the total number r of zero modes is 11, including
four translations, a scale transformation, and six four-
dimensional rotations, since the symmetry of an instan-
ton is similar to that of an irregular solid.

The scheme developed above can be applied to cal-
culate other quantities [42]. The most general vertex in
QED contains M photon legs and 2L electron legs and
c orresponds to the functional integral

(4.2.6)

Integration over the fermionic fields results in

(4.2.7)

Here, G(x, x') is the Green function of the Dirac
operator,

(4.2.8)

and the ellipsis stands for terms with different pairings
of ψ(yi) and (zk). The structure of the result can be
found by performing calculations as demonstrated
above, i.e., essentially by dimensional analysis. It can
readily be shown that ec ~ N–1/4 and Ac(x) ~ N1/2 for a
saddle-point configuration. To determine the dimension

S0
N /2–

ZN const S0
N /2– Γ N r+

2
------------- 

  , S0
4π3

33/2
--------.= =

ZM L, DADψDψA x1( )∫=

…A xM( )ψ y1( )ψ z1( )…ψ yL( )ψ zL( )

× d4x
1
4
--- ∂µAν ∂νAµ–( )2∫–





exp

---+ ψ iγ ν∂ν m– eγ νAν+( )ψ




.

ZM L, DAA x1( )∫=

…A xM( )G y1 z1,( )…G yL zL,( )
× det iγ ν∂ν m– eγ νAν+( )

× 1
4
--- d4x ∂µAν ∂νAµ–( )2∫–

 
 
 

exp ….+

iγ ν∂ν m– eγ νAν+( )G x x',( ) δ x x'–( ),=

ψ
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of G(x, x'), write out the Dyson equation that follows
from (4.2.8):

(4.2.9)

To elucidate the structure of the solution, consider the
scalar counterpart of (4.2.9) and assume that the func-
tion Aν(x) is localized within a small neighborhood of
x = 0. Then, the equation is easily solved by setting
G(y, x') ≈ G(0, x'):

(4.2.10)

Since eAν(x) ~ N1/4 and (4.2.10) tends to a finite limit as
e  ∞, the result is G(x, x') ~ N0. It is reasonable to
expect that its validity is independent of the assump-
tions used in its derivation. The Nth-order contribution
to integral (4.2.6) has the form

(4.2.11)

for even M and a similar form multiplied by eN1/4 for
odd M.

4.3. Other Fermionic Models 

Another example is given by Yukawa model [15], de-
scribing effective fermion interaction due to exchange by
bosons (decription of electron–phonon interaction 
in metals is reduced to this model with minor changes):

(4.3.1)

Integration over the fermionic fields results in

(4.3.2)

The transformation of the fermion determinant begins
with the solution of an analogous problem for the deter-
minant of the Schrödinger operator normalized to the
determinant of the unperturbed problem (normalization

G x x',( ) G0 x x'–( )=

– d4yG0 x y–( )eγ νAν y( )G y x',( ).∫

G x x',( ) G0 x x'–( )=

–
G0 x'–( ) d4yG0 x y–( )eγ νAν y( )∫

1 d4yG0 y–( )eγ νAν y( )∫+
-----------------------------------------------------------------------------.

const
33/2

4π3
-------- 

 
N /2

Γ N r M+ +
2

------------------------ 
  g–( )N

Z DϕDψDψ ddx
1
2
--- ∂µϕ( )2∫–





exp∫=

+
1
2
---m2ϕ2 ψ iγ ν∂ν M+( )ψ λψϕψ+ +





.

Z Dϕdet iγ ν∂ν M λϕ+ +( )∫=

× ddx
1
2
--- ∂µϕ( )2 1

2
---m2ϕ2+∫–

 
 
 

.exp

of this kind always arises due to the normalization of a 
functional integral to the vacuum integral of the intera-
ction-free theory):

(4.3.3)

It can easily be shown that

(4.3.4)

where µs denotes the eigenvalues of the problem

(4.3.5)

The number s of energy states below E for an electron
moving in a semiclassical potential –µV(x) can be
found in the Thomas–Fermi approximation. By introdu-
cing the local Fermi momentum

(4.3.6)

it is expressed as

(4.3.7)

where n(x) is the local electron density and Kd is the
area of a d-dimensional unit sphere divided by (2π)d.
Since the value of µs in (4.3.5) corresponds to the con-
dition that exactly s electron energy states lie below E,
expression (4.3.7) describes the asymptotic behavior of
µs for large s:

(4.3.8)

Now, the value of (4.3.4) can easily be estimated at
large z:

(4.3.9)

When d < 2, the upper limit in the integral can be set to be
infinite, and the integral is calculated by changing from
x to ax in the logarithm and differentiating the result

D z( ) det ∆– E– zV x( )+[ ]
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---------------------------------------------------=

=  det 1 z
V x( )
∆– E–

-----------------+ .
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s n x( )ddx∫
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d
------ pd x( )ddx∫= =

≈
Kd

d
------ µV x( )[ ]d/2ddx,∫

s Aµs
d /2, A

Kd

d
------ V x( )[ ]d/2ddx.∫= =

D z( )ln 1 z
µs

-----+ 
 ln

s 1∼

∞

∑=

≈ A
d
2
--- µsµs

d/2 1– 1 z
µs

-----+ 
 lnd

~A
2/d–

∞

∫

≈ A
d
2
---zd /2 xd

x1 d/2+
-------------- 1 x+( )ln

0

~zA
2/d

∫ Azd /2 π
πd/2( )sin

------------------------.≈
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with respect to a. The substitution of Kd =
21 − dπ−d/2/Γ/(d/2) yields the final result

(4.3.10)

It is well known that the Dirac operator can be obtained
by factorization of the Klein–Gordon operator, which
is transformed into the Schrödinger operator by
Wick rotation:

(4.3.11)

An analogous relation holds after m is replaced with
λϕ(x), where ϕ(x) is a slowly varying function. For
large λ, it can readily be shown that

(4.3.12)

and (4.3.2) acquire the effective action

(4.3.13)

where g = λ2 is as an effective coupling constant, in 
terms of which  the integral (4.3.1) is expanded.

When 2 ≤ d < 4 or d ≥ 4, the divergence of the inte-
gral in (4.3.9) is eliminated by renormalization of  mass
and charge [34] so that ln(1 + x) is replaced with
ln(1 + x) – x and ln(1 + x) – x + x2/2, respectively. The
integral is calculated by changing from x to ax and dif-
ferentiating the result with respect to a. The result

D z( ) Γ d/2–( )
4π( )d /2

-------------------- ddx zV x( )[ ]d/2∫–
 
 
 

.exp=

∆– m2+ iγ ν∂ν m+( ) iγ ν∂ν– m+( ).=

det
iγ ν∂ν M λϕ+ +

iγ ν∂ν M+
------------------------------------- 

  det
∆– λ2ϕ2 x( )+

–∆
---------------------------------- 

 ≈

≈ Γ d/2–( )
2 4π( )d /2
-------------------- ddx λϕ x( )[ ]d∫–

 
 
 

exp

Seff ddx
1
2
--- ∂µϕ( )2 1

2
---m2ϕ2+∫=

+
Γ d/2–( )
2 4π( )d/2
--------------------gd/2ϕd x( ) ,

obtained for d ≠ 2, 4 is formally identical to (4.3.13). If
d = 2 or 4, then the calculation can be performed to log-
arithmic accuracy by taking into account the finite
upper limit in the last integral in (4.3.9).

Effective action (4.3.13) can be rewritten as

(4.3.14)

where

and the change to  = g1/α and  = αN  can be performed 
to reduce the expression for the expansion coeffici-
ents to a form analogous to that in ϕ4 theory. The 
final result is similar to ϕ4 theory up to the change
N  αN:

(4.3.15)

4.4. Degenerate Vacuum 

Calculations of the Lipatov asymptotic forms for the-
ories with degenerate vacuum require special analysis.

Consider, for example,  the one-dimensional Ising
ferromagnet with a doubly degenerate ground state
with all spins either up or down. In addition to these
vacuums, there exists a classical domain-wall solution
(an example of topological instanton), which corre-
sponds to transition between the two degenerate vacu-
ums (Fig. 5a). The issues to be resolved in such prob-
lems arise from the following:  (a) the contribution  of 
topological instantons to asymptotic expression  for ex-
pansion coefficients is pure imaginary, which implies
that they are insignificant in some sense; (b) generally,
the absence of other nontrivial classical solutions in
problems of this kind is established by special theorems.

To elucidate these issues, suppose that the degener-
acy of the vacuum states is eliminated by applying a
magnetic field aligned with the ferromagnet’s axis.
Then, domain-wall-like excitations cannot exist,
because they are associated with an infinitely large
additional energy (in the infinite-volume limit). How-
ever, excitations can exist in the form of instanton–anti-
instanton pairs (Fig. 5b). If the interaction between the
components of such a pair is repulsive, then there 
exists an equilibrium distance between the compo- 
nents. If magnetic  field is increased, the 
equilibrium distance decreases and  a localized
instanton typical for  Lipatov’s method  arises. If mag-
netic  field is decreased, the equilibrium distance 
increases, with simultaneous growth of its fluctuations. 
As a result, the pair breaks up into free instanton 
and anti-instanton  in the limit of strictly degene-
rate vacuum states.

Seff g ϕ,{ } S ϕ{ }
g1/α-------------,=

φ ϕg1/2α, α d 2–
d

------------,= =

g̃ Ñ

ZN cS0
αN– Γ αN b+( ).=

(a)

H(b)

Fig. 5. Domain wall as example of topological instanton for
the problems with degenerate vacuum (a). If degeneracy of 
vacuum states is removed, a saddle-point configuration
corresponds to an instanton-anti-instanton pair (b).
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Because of strong fluctuations in the distance
between the components, the saddle-point approxima-
tion can be applied in Lipatov’s method only if N � 1/�
(rather than N � 1), where � is a small parameter char-
acterizing the difference between the vacuums. How-
ever, there exists an intermediate asymptotic regime,
which is virtually independent of �, for 1 � N � 1/�. As
�    0, this intermediate asymptotic behavior tran-
sfers into the true asymptotics of the degenerate problem.
This implies that the latter asymptotics can be found
without analyzing the case of strictly zero �.  For finite �,
single instantons do not exist and therefore do not con-
tribute to the asymptotics of perturbation theory, which
is determined by the instanton–anti-instanton pair.

The physical picture described  above was develop-
ed in an analysis of the quantum mechanical problem 
of double-well oscillator [43]. Analogous picture can
be expected  for other theories with degenerate 
vacuum, among which Yang–Mills theories are of par-
ticular interest.

4.5. Yang–Mills Theory and QCD 

The topological instanton found in [44] for the
Yang–Mills theory was the earliest evidence of the
existence of degenerate vacuum in QCD. In [45], the
saddle-point calculation of a functional integral was
performed for the one-instanton configuration of SU(2)
Yang–Mills fields coupled to fermions and scalar parti-
cles. This result was extended to arbitrary SU(Nc) sym-
metry in [46]. In an analysis of saddle-point configura-
tions performed for the Yang–Mills field coupled to a
scalar field in [18], a continuous transformation of the
ϕ4 theory instanton into a saddle-point configuration for
the pure Yang–Mills theory was found. The latter con-
figuration was shown to correspond to an instanton–
anti-instanton pair; i.e., a physical picture described 
above was confimed for the Yang-Mills theory.  The 
result of [45] for a single instanton was used in [17]
to calculate the contribution of the instanton–anti-
instanton configuration to asymptotic behavior of per-
turbation theory for SU(2) Yang–Mills fields. The Lipa-
tov asymptotic forms for realistic QCD were calculated
in [24–26]. A general scheme of these calculations is
presented below.

As a first step,  we formulate a rule for combining 
of instantons [33] on example of the functional integral

(4.5.1)

where A(i) is a bosonic field, and the superscript i stands
for both coordinate and internal degrees of freedom.
Suppose that the action S{A, g} is rewritten as S{B}/g2

by changing from A to B/g and the equation S '{B} = 0
has an instanton solution Bc . By following the scheme

ZM g( )  DAA 1( )A 2( )…A M( ) S A g,{ }–( ),exp∫=

developed in Section 4.1, it can readily be shown that
the one-instanton contribution to ZM(g) has the form

(4.5.2)

where S0 = S{Bc}, r is the number of zero modes, λi

denotes the corresponding collective variables, and Bλ
is the instanton configuration depending on these vari-
ables.

If Bc is the combination Bλ + Bλ' of elementary
instantons, then the corresponding two-instanton con-
tribution can be represented as the sum of terms , hav-
ing the form

(4.5.3)

with L + L' = M. The instanton–instanton interaction
Sint(Bλ, Bλ') is defined by the relation

(4.5.4)

When the interaction is neglected, the right-hand side
of (4.5.3) reduces to the product of two expressions
having the form of (4.5.2), with M = L and M = L'. Due
to the exponential factor, the instanton–instanton inter-
action is limited by the condition Sint(Bλ, Bλ') � g2.
When g is small, the interaction is insignificant, and the
overlap of Bλ and Bλ' can be neglected. The resulting
sum in L and L' contains only the terms with L = M,
L' = 0 and L = 0, L' = M, which are obviously equal. The
ensuing factor 2 is canceled by the combinatorial factor
1/2! introduced to preclude double counting of config-
urations. The resulting two-instanton contribution,

(4.5.5)

entails a rule for combining instantons: in addition to
the information contained in (4.5.2), it is necessary to
know the instanton–instanton interaction in the domain
where the interaction is weak.

ZM
1( ) g( ) c0g M– r– e

S0/g2–
=

× λiBλ
1( )Bλ

2( )…Bλ
M( ),d

i 1=

r

∏∫

ZLL' g( ) c0
2g M– 2r– e

2S0/g2–
=

× λi λi'Bλ
1( )…Bλ

L( )Bλ'
1( )…Bλ'

L'( )dd
i 1=

r

∏∫

×
Sint Bλ Bλ',( )

g2
----------------------------– 

 exp

S Bλ Bλ'+{ }
≡ S Bλ{ } S Bλ'{ } Sint Bλ Bλ',( ).+ +

ZM
2( ) g( ) c0

2g M– 2r– e
2S0/g2–

=

× λi λi'Bλ
1( )…Bλ

M( ) Sint Bλ Bλ',( )
g2

----------------------------– 
  ,expdd

i 1=

r

∏∫
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In relativistic scale-invariant theories, it is convini-
ent to single out  integrations over ρ ,  x 0 ,  the   radius  and 
a center of instanton  [41],  understanding under    λ i  only 
internal degrees of freedom. Then (4.5.2) takes a form:

(4.5.6)

where yi = (xi – x0)/ρ, ν = –β2S0, β2 is the lowest order
nonvanishing expansion coefficient for the Gell-Mann–
Low function, µ is momentum at the normalization
point, and exp(νlnµρ) is uniquely factored out by virtue
of the renormalizability condition [41]. Formula (4.5.6)
is consistent with ’t Hooft’s result for SU(Nc) Yang–
Mills fields (S0 = 8π2, r = 4Nc, ν = (11Nc – 2Nf)/3) [45,
46] and (with g2 replaced by g) with the corresponding
result in ϕ4 theory [7, 14, 37].

The QCD Lagrangian has the form

(4.5.7)

where , ψf , and ωa denote gluon, quark, and ghost
fields, respectively; Ta and fabc are the generators of the
fundamental representation and structure constants of
the Lie algebra, respectively; α is the gauge parameter;
and the subscript “f” denotes the types of quarks, whose
total number is Nf . The preexponential factor in the
most general functional integral for QCD contains M
gluon fields, 2L ghost fields, and 2K quark fields:

(4.5.8)

where the vector indices that are not essential for the
present analysis are omitted. By replacing A with B/ ,
the Euclidean action is rewritten as

(4.5.9)

ZM
1( ) g( ) cHg M– r– e

S0/g2–
λi d4x0∫d

i

∏∫=

× ρρ M– 5– eν µρln Bλ y1( )…Bλ yM( ),d∫

L
1
4
--- Fµν

a( )2
–

1
2α
------- ∂µAµ

a( )2
–=

+ ψf D̂ψf ∂µωa ∂µωa g f abcωbAµ
c–( ),+

f

∑
Fµν

a ∂µAν
a ∂νAµ

a– g f abcAµ
b Aν

c ,+=

D̂ iγ µ ∂µ igAµ
a Ta–( ),=

Aν
a

ZMLK DADωDωDψDψA x1( )∫=

…A xM( )ω y1( )ω y1( )…ω yL( )ω yL( )
× ψ z1( )ψ z1( )…ψ zK( )ψ zK( )
× S A ω ω ψ ψ, , , ,{ }–( ),exp

g

S A ω ω ψ ψ, , , ,{ } S B{ }
g2

-------------

+ d4x ωQ̂ω ψf D̂ψf

f

∑+ .∫

Integration over the fermionic fields results in

(4.5.10)

where G and  are the Green functions of the operators

 and , and the ellipsis stands for terms with differ-

ent pairings. It is important here that S{B}, G, and 
are independent of . Functional integral (4.5.10) is
dominated by the Yang–Mills action, and the corre-
sponding one-instanton contribution can be written out
by analogy with (4.5.2). The asymptotic behavior of
perturbation theory is determined by an instanton–anti-
instanton contribution calculated by analogy with (4.5.5).
The instanton–instanton interaction is specified by
introducing a conformal parameter ξ:

(4.5.11)

where ρI and ρA denote the instanton and anti-instanton
radii, R is the distance between their centers, and h =
h(λ, λ') depends on their mutual orientation in the iso-
topic space [24]. Next, it should be noted that

det {Bλ + Bλ'} ≠ det {Bλ}det {Bλ'} since det {Bλ}
does not vanish only if the finite quark mass is taken

into account, whereas det {Bλ + Bλ'} is determined by
the instanton–instanton interaction and is finite in the
massless limit (see [24]),

(4.5.12)

By factoring the integrals over the instanton radii and cen-
ters and changing to the momentum representation, the
instanton–anti-instanton contribution is rewritten as

(4.5.13)

where 〈B〉k , 〈G〉k, k' , and  denote Fourier compo-

nents of B(x), G(x, x'), and , respectively; ρ ≡

ZMLK 1/g( )M DAB x1( )∫=

…B xM( )G y1 y1,( )…G yL yL,( )

× G̃ z1 z1,( )…G̃ zK zK,( )detQ̂ detD̂( )
N f

× S B{ }/g2–{ }exp …,+

G̃

Q̂ D̂

G̃
g

Sint hξ, ξ–
ρI

2ρA
2

R2 ρI
2 ρA

2+ +( )2
-------------------------------------,= =

D̂ D̂ D̂ D̂

D̂

detD̂ Bλ Bλ'+{ } const ξ3/2.=

ZMLL'
IA( ) const

gM 2r+
--------------e

2S0/g2–
λi λi'dd

i

∏∫=

× ρρ3M 6L 5L' 5–+ + e2ν µρln Bλ〈 〉ρ p1
d∫ … Bλ〈 〉ρ pM

× Gλ〈 〉ρk1 ρk1', … Gλ〈 〉ρkL ρkL', G̃λ〈 〉ρq1 ρq1',

… G̃λ〈 〉ρqL' ρqL',
ξd

ξ
1 ν/2 3N f /2–+

----------------------------e h λ λ',( )ξ/g2–

0

~1

∫ …,+

G̃〈 〉 k k',

G̃ x x',( )
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ρI; use is made of the fact that the dominant contribu-
tion is due to the region where R ~ ρA � ρI; and rela-
tion (18) from [24] is taken into account.

By following [17] (see also [33]), the last integral is
replaced by the corresponding jump at  the cut.
Then, (4.5.13) yields a jump in the total value of ZMLL'
at the cut:

(4.5.14)

where the independence of Bλ , Gλ , and  of  is used

and all integrals are assumed to be convergent.8 By vir-
tue of relation (3.17) between the jump  at the cut
and the asymptotic form of expansion coefficients, the
Nth-order contribution to ZMLL' is

(4.5.15)

for even M and   with   additional   multiplier
for odd M [17, 24, 47]. This result is analogous to that
discussed in Section 4.1: the term M/2 in the argument
of the gamma function is determined by the number of
external lines, 4Nc is half the number of zero modes,
and 11(Nc – Nf)/6 is the additional contribution of the
soft mode corresponding to variation of the instanton–
anti-instanton distance. Specific values of the constant
factor were calculated in [17, 24, 25].

5. RENORMALONS. PROBLEM OF MATHEMATICAL 
SUBSTANTIATION OF LIPATOV’S METHOD

5.1. ’t Hooft’s Argumentation 

The invention of Lipatov’s method was widely rec-
ognized, and it was immediately applied to almost
every topical problem in theoretical physics (see [19]).
However, the validity of Lipatov’s method was ques-
tioned as early as in 1977. The criticism dates back
to [49], where the following interesting remark was
made. Lipatov’s result (2.5) is usually interpreted as
a contribution of the factorial number of diagrams of
order (ag)N. However, this interpretation is incorrect in
the general case:  there exist individual  Nth-order dia-
grams (with long chains of “bubbles”) whose contribu-
tions are proportional to N! (see Fig. 6a); they were
called renormalons since they arise only in renormaliz-

8 In the quark–quark correlation function, the integral in ρ involves
divergences. The method for eliminating them proposed in [24, 26]
evokes doubts [48]. For M ≥ 1, the integral is convergent.

∆ZMLL' g( ) i const
1
g
--- 

 
M 2r ν 3Nf–+ +

=

×
2S0

g2
--------– 

  ,exp

G̃λ g

ZMLK[ ]Ng2N const 16π2( ) N–
=

× Γ N
M
2
----- 4Nc

11 Nc N f–( )
6

-----------------------------+ + + 
  g2N

gN1/2

able theories:9 Though the example discussed
in [49] and illustrated by Fig. 6a was taken from quan-
tum electrodynamics, analogous diagrams arise in
QCD and four-dimensional ϕ4 theory. Strictly speak-
ing, Lautrup’s remark is inconsequential, since Lipa-
tov’s method relies on formal calculation of functional
integral (2.4) and does not involve any statistical analy-
sis of diagrams. Therefore, it should be expected that
the renormalon contributions are already included in  (2.5).

However, ’t Hooft claimed in [50] that renormalons
provide an independent mechanism of divergence of
perturbation series and their contribution is not con-
tained in the Lipatov asymptotics. The argumentation
put forward by ’t Hooft relies on an analysis of the ana-
lyticity properties of Borel transforms. Indeed, the

9 We have in mind the theories with running coupling, where 
logarithmic situation takes place. No renormalons arise in 
super-renormalizable theories.

(a)

(b) (c)

(d)

(e)

1

2

N

k

= + + …+

N1
2

x0 x

f

Fig. 6. (a) Example of single QED diagram of Nth-order givimg cont-
ribution N! [49]. More wide class of renormalon diagrams is obtained
by distinguishing the internal photon line (b) and inserting a chain of 
electron “bubbles” in it (c) .  (d) Insertions into the photon line correspond
to “dressing” of interaction. (e) Example, when saddle-point method 
is formally applicable, but leads to incorrect results.
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Borel transform of the function represented by a series
with expansion coefficients caNΓ(N + b) has a singular
point at z = 1/a:

(5.1)

Thus, the value of a in (2.5) determines the location of
a singular point in the Borel plane. This conclusion was
obtained by ’t Hooft without reference to Lipatov’s
method. Representing action as S{φ}/g (see Section 4),
one can rewrite a general functional integral and the
definition of Borel transform (3.12) as follows:

(5.2)

(5.3)

where the factors gn are omitted since they cancel out
when Green functions are calculated as ratios of two
functional integrals. Then, the Borel transform of func-
tional integral (5.2) is

(5.4)

where  |S'{φ}|  is  the  modulus  of  the  vector  defined
in (4.1.6), and the last integral is calculated over the
hypersurface z = S{φ}. If φc(x) is an instanton, then
S'{φc} = 0 and (5.4) has a singular point at z = S{φc},
which coincides with 1/a for the instanton having
the  minimum   action  S 0. Furthermore, there exist sin-
gular points at the points mS0, which correspond to
m  remote instantons , and singularities corresponding to
instantons of other form. If z = S 0 is the singular point
nearest to the origin, then Lipatov asymptotic
form (2.5) is  valid.  However, ’t Hooft hypothesized
that singularities other than instantons may exist, in
which case the asymptotic behavior of expansion coef-
ficients may be determined by the non-instanton  
singular point nearest to the origin.

Renormalons were considered by ’t Hooft as a pos-
sible new mechanism of arising of singularities. The vir-
tual photon line with momentum k in an arbitrary QED
diagram (see Fig. 6b) represents an large-momentum
integral of the form

(5.5)

where n is integer. After all renormalizations are per-
formed, the integral is convergent and n ≥ 3. When N
electron bubbles are inserted into the photon line (see
Fig. 6c), the integrand is multiplied by lnN(k2/m2) (m is
electron mass), and the resulting integral is propor-

B z( ) caN Nb 1– zN

N

∑ 1 az–( ) b– ,∼=

za 1.

Z g( ) Dφ S φ{ }
g

-------------– 
  ,exp∫=

Z g( ) xe x/g– B x( ),d

0

∞

∫=

B z( ) Dφδ z S φ{ }–( )∫ σd
S' φ{ }
-----------------,

z S φ{ }=

∫°= =

d4kk 2n– ,∫

tional to N!. Insertions in the photon line correspond to "dres-
sing” of coupling.  Accordingly, g 0 is replaced by a
running coupling g(k^2) arising in the integrand of (5.5).
Summation of diagrams of the form shown in Fig. 6c is
equivalent to the use of the one-loop approximation
β(g) = β2g2 for the Gell-Mann–Low function and leads
to a well-known result:

(5.6)

Performing the integration over  k2 � m2 , we obtain

(5.7)

After the  Borel summation,  this yilds renormalon sin-
gularities at the points10 

, (5.8)

in the Borel plane z.  In  ϕ4 theory and QED, instanton
and renormalon singularities lie on the negative and
positive half-axes, respectively (see Fig. 7a); in QCD,
the converse is true. The analysis presented above
shows that factorial contributions due to individual dia-
grams arise in any field theory where the leading term
in the expansion of β(g) is quadratic.

It is obvious that ’t Hooft’s argumentation with
regard to renormalons leaves unanswered the following
basic questions: Why should certain sequences of dia-
grams be considered particularly important even
though they comprise only a small fraction of all dia-
grams? How should we deal with double counting? (In
other words, how do we know that renormalons are not
taken into account in instanton contribution (2.5)?)
However,  setting of the problem on the possibility of
non-instanton contributions to the asymptotic behavior
of expansion coefficients is of  essential interest:
it brings to light a shortcoming in the mathematical
substantiation of Lipatov’s method. Indeed, consider a
function f(x) that has a sharp peak at x0 and a slowly
decaying “tail” at large x (Fig. 6e), so that the contribu-
tions of the peak and tail regions to the integral

dx are comparable. An analysis of the integral

would reveal the existence of a saddle point at x0 and (if
it is sufficiently sharp) show that the saddle-point
method is formally applicable. However, the calcula-
tion of the integral in the saddle-point approximation
would be incorrect, because the contribution of the tail

10Analogous singularities with n = 0, –1, –2, … (known as infrared
renormalons) arise in the integral over the small-momentum
region. 

g k2( )
g0

1 β2g0 k2/m2( )ln–
--------------------------------------------.=

d4kk 2n– g k2( )∫ g0 d4kk 2n– β2g0
k2

m2
------ln 

 
N

∫
N

∑=

∼ g0 N!
β2

n 2–
----------- 

 
N

g0
N .

N

∑

zn
n 2–

β2
-----------, n 3 4 5 …, , ,= =

f x( )∫
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would be lost. If tails of this kind contribute to (2.4),
then Lipatov’s method fails.

Since there is hardly any alternative to the saddle-
point method in calculations of functional integrals,
direct analysis of possible tail contributions cannot be
performed, and ’t Hooft’s argumentation is difficult to
disprove. Nevertheless, it is “unnatural” in a certain
sense: for any finite-dimensional integral (5.2), it can
be shown that (a) its value for g  0 is determined by
saddle-point configurations [51] (according to (4.1.8),
gc  0 as N  ∞) and (b) all singularities in the
Borel plane are associated with action extrema
(’t Hooft’s argumentation based on (5.4) is necessary
and sufficient). Therefore, renormalon singularities
may arise only in the limit of an infinite-dimensional
integral. However, the constructive argumentation in
support of their existence is rather  weak and can
easily be disproved by a careful analysis [48]. Further
studies showed that summation of a more complicated
sequences of diagrams leads to substantial modification
of the renormalon contribution. The common coefficient
before it  becomes totally indeterminate [52],  and
the possibility that it vanishes cannot be ruled out.
Thus, the existence of renormalon singularities is not an
established fact, and this is admitted even by the most
enthusiastic advocates of this hypothesis [53].

Nevertheless, ’t Hooft’s view immediately became po-
pular [54–60]. Probanly, this is explained by the use of
the convinient diagrammatic technique. One  can easily
insert a chain of bubbles into any diagram and explore 
the qualitative consequences of divergency of perturbation
series for any phenomenon under study. As for instan-
ton approach, it can be combined with diagrammatic cal-
culations (see [8]), but the procedure is very cumbersome.
Of course, the use of renormalons as a "model" does not
arouse objections. Moreover, one can formulate   conditions 
when such model is justified  (see Section 5.3). Regrettably
further investigation of high-order behavior of perturba-
tion theory was hampered after ’t Hooft’s lecture [50], which
had thrown doubt on the validity of Lipatov’s method.
As a consequence of the drop in its popularity, the com-
plete perturbation-theory asymptotics in both QED and
QCD remain uncalculated to this day, though all fun-
amental issues were resolved in the late 1970s.

5.2. Absence of Renormalon Singularities
in ϕ4 Theory 

In the analysis of the Borel transforms arising in ϕ4

theory presented in [48], it was shown that they are ana-
lytic in the complex plane with a cut extending from
the nearest instanton singularity to infinity (see
Fig. 7b), in agreement with a hypothesis (put forward
by Le Guillou and Zinn-Justin [35]) that underlies an
extremely efficient summation method, conformal–
Borel technique (see Section 6.1). A comparison with
’t Hooft’s picture    (Fig. 7a) shows that all

instanton singularities are absorbed by the cut, while
renormalon singularities are absent.

The approach developed in [48] relies on the use of
the modified Borel transform in which N! is replaced by
Γ(N + b0) with an arbitrary b0:

(5.9)

(Borel–Leroy transform). It can readily be shown that
all Borel transforms are analytic in the same domain,
which is easy to find by setting b0 = 1/2, since the cor-
responding Borel transform preserves exponential
form:

(5.10)

Accordingly, the Borel transform of (2.3) can be
expressed as

(5.11)

F g( ) xe x– x
b0 1–

B gx( ),d

0

∞

∫=

B g( )
FN

Γ N b0+( )
------------------------gN

N 0=

∞

∑=

F g( ) e g– B z( ) 1

2 π
---------- e2i z c.c.+{ }.= =

B z( ) 1

2 π
---------- Dϕ S0 ϕ{ }–( )exp∫=

× 2i zSint ϕ{ }( )exp c.c.+[ ],

z

z

gz

S0 1/β2

instantons renormalons

(a)

(b)

(c) (d)

S0

B(z) β(g)

Fig. 7. (a) Singularities in ϕ4 theory according to ’t Hooft
[50]. (b) Domain of analyticity according to [48]. Analytic-
ity of B(z) for |argz | < π/2 + δ (c) entails analyticity of
β(g) for |argg | < π + δ  (d), i.e., on the entire physical sheet
of the Riemann surface.
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and used to find the domain of analyticity for any finite-
dimensional integral (2.3)  (i.e. functional  integral, 
determined on a  finite-size lattice)    for m2 > 0.

The infinite-volume limit can be taken after Green
functions are constructed as ratios of two integrals of
the type  (2.3). This limit is not singular, if the system
under study is not at a phase-transition point: then 
partition into quasi-independent subsystems is possible
due to finiteness of the correlation length;   in  ϕ4 the-
ory, this possibility is guaranteed by the condition
m2 > 0.

Transition to the continuum limit does not present
any problem in the absence of ultraviolet divergences,
which corresponds to d < 2. When the theory is diver-
gent in the ultraviolet limit, the proof consists of the fol-
lowing steps:

(a) the domain of analyticity of B(z) is determined
for a finite cutoff parameter Λ by using Feynman regu-
larization;

(b) the domain of analyticity is found for the Borel
transform of the Gell-Mann–Low function and the
anomalous dimensions defined in the cutoff scheme,
whose dependence on Λ fades out as Λ  ∞;

(c) the invariance of the domain of analyticity under
charge renormalization is proved;

(d) the domain of analyticity is determined for
renormalized vertices and renormalization-group func-
tions in other renormalization schemes.

Let us discuss a subtle point of the proof that was
not elucidated in [48]. Any quantity calculated pertur-
batively is a function of the bare charge gB and the cut-
off parameter Λ. Changing to a renormalized charge g,
one obtains a function F(g, Λ) that have weak dependence
on Λ, but approaches a finite limit as Λ ∞    due to
renormalizability. Similarly, its Borel transform
B(z, Λ) tends to a finite limit B(z). In [48], it was rigor-
ously proved that B(z, Λ) is analytic in the complex z
plane with a cut extending from the nearest instanton
singularity to infinity when Λ is finite. The function
B(z) is analytic in the same domain if the series is uni-
formly convergent (by the Weierstrass theorem [61]),
which is the case when B(z, Λ) is bounded (by compact-
ness principle [62]). Therefore, regularity of B(z) is
guaranteed if the limit with respect to Λ is finite. How-
ever, renormalizability has been rigorously proved only
in the framework of perturbation theory, i.e., for the
coefficients of expansions in g and z, rather than
directly for the functions F(g, Λ) and B(z, Λ). The proof
presented in [48] assumes the existence of finite limits
on the level of functions and is incomplete in this
respect. However, the existence of these finite limits
should be considered as a necessary physical condition
for true renormalizability. This condition is directly
related to the  necessity  of redefinition of functional
integrals discussed below (see Section 5.3).

5.3. General Criterion for the Absence 
of Renormalon Singularities 

The absence of renormalon singularities in the four-
dimensional ϕ4 theory, which is a typical “renormalon”
theory, puts to question the general concept of renorma-
lon. The problem of renormalons in an arbitrary field
theory was elucidated in [63]. Returning to quantum
electrodynamics, consider the simplest possible class
of renormalon diagrams corresponding to all kinds of
insertions into a photon line (see Figs. 6b and 6c).
When the function β(g) is known,  all of these diag-
rams can easily be summed by solving the Gell-Mann–
Low equation

(5.12)

under the initial condition g(k2) = g0 for k2 = m2 ; then one can 
judge on existence of renormalon singularities analyzing 
the  expansion  in   g0   for an integral of type (5.7).

The solution to Eq. (5.12) is

(5.13)

In view of the behavior of F(g) for small g, the following 
expression can be used :

(5.14)

The formal solution of (5.13) for g is

(5.15)

Here, the right-hand side is regular at g0 = 0; i.e., it can
be represented as a series in powers of g0 of the form

(5.16)

where r(x) is the radius of convergence and AN behaves
as a power of N. The radius of convergence is deter-
mined by the distance to the singular point nearest to
the origin.
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 is a singular point of the function 
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), then
the singular points in 
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0

 

  of  (5.15) satisfy the equation

(5.17)

or

(5.18)

If 

 

z
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 is finite, then

  

  Eq. (5.18) at large x has a small
root 
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0

 

 

 

≈
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x

 

,   since its right-hand side is negligible  
by virtue of (5.14). As a result, there exists a singular
point at 

 

g

 

c

 

 

 

≈

 

 1/

 

x

 

, and the series in (5.16) is

(5.19)

Sustitution (5.19)  into integral (5.7) leads to renormalon
singularities at the points  (5.8)  (note that the inte-
gral is dominated by the contributions of large k, which
correspond to large x). If zc = ∞, then Eq. (5.17) has no
solution for g0 ~ 1/x, and the expansion of type 
(5.19) is possible with coefficients, decreasing faster 
than any exponential. Thus, the renormalon contribution 
is definitely smaller than the instanton  one and the Borel 
plane does not contain renormalon singularities.

If the function z = F(g) is regular at g0 and F'(g0) ≠
0, then its inverse g = F–1(z) is regular, existing in the
neighborhood of g0. Therefore, the singular points of
F−1(z) are zc = F(gc), where gc is any point determined
by condition

(5.20)

In summary, renormalon singularities exist if there is at
least one point gc (including gc = ∞) satisfying condi-
tion (5.20) and zc = F(gc) < ∞. Otherwise, renormalon
singularities do not exist.

In terms of the β function, this result
imply that renormalon singularities do not exist
if β(g) ~ gα with α ≤ 1 at infinity and its singularities at
finite gc are so weak that the function 1/β(g) is noninte-
grable at gc (e.g., β(g) ~ (g – gc)γ with γ ≥ 1). When
either condition is violated, there exist renormalon sin-
gularities in the points (5.8).

An analysis of more complicated classes of renor-
malon diagrams relying on the general Callan–Syman-
zik renormalization-group equation [63] leads to simi-
lar conclusions: necessary and sufficient conditions for

zc
1

β2g0
----------– f g0( ) k2
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------ln+ +=

g0x 1– β2g0 zc f g0( )–[ ].=

g k2( ) AN g0x( )N
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F' gc( ) 0 or F' gc( ) does  not  exist.=  

the existence of renormalon singularities can be estab-
lished, but no definite assertions can be made by using
only results of renormalization-group analysis.

Now, recall that the perturbation series expansion of

 

β

 

(g) is factorially divergent because there exists a cut ema-
nating from the origin in the complex 

 

g

 

 plane. There-
fore, both 
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= 0 and 

 

g

 

 = 
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 are branch points, and 

 

β

 

(

 

g

 

)
can be represented by a Borel integral:

(5.21)

Suppose that the Borel transform 
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 > 0 (see
Fig. 7c). Then, 
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) is a regular function for 

 

|

 

arg

 

g

 

|

 

 < 

 

π

 

 +

 

δ

 

 (see Fig. 7d), which implies the absence of singularities
at finite 

 

g

 

 in the physical sheet of the Riemann surface. Then
the behavior of 

 

β

 

 at infinity (
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α

 

 with 
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≤

 

 1)
gives the condition for  absence of renormalon singularities.

This criterion can be constructively used as follows.
According to ’t Hooft's picture  (see Fig. 7a), instanton
and (possible) renormalon singularities lie, respectively,
on the negative and positive half-axes in both 

 

ϕ

 

4

 

 theory
and QED. Let us assume that renormalon singularities
do not exist; then (a) the regularity condition for 

 

β

 

(

 

g

 

) at
finite 

 

g 

 

(see Figs. 7c and 7d) holds, (b) the asymptotic
behavior of the expansion coefficients 

 

β

 

N

 

 is determined
by the nearest instanton singularity and can be found by
Lipatov’s method, and (c) the behavior of 

 

β

 

(

 

g

 

) at infinity
can be uniquely determined by summing the correspond-
ing perturbation series expansion since the Borel integral
is well defined. If 

 

β

 

(g)  grows  faster  than  

 

g

 

α

 

 with 

 

α

 

 > 1,
then the initial assumption is incorrect, and the exist-
ence of renormalon singularities is proved by contradic-
tion. If  β  (  g  ) ~  g  

α
  with  α    ≤   1, then the assumption on

the absense of renormalon singularities is self-con-
sistent. These results are extended to QCD by changing 

 

g

 

the  signs of   g and  z.

 

z.

 

The program of determination of Gell-Mann–Low
functions outlined here was implemented in [42, 47, 64,
65] (see discussion in Section 8). The exponent 

 

α

 

 is
close to unity in both 

 

ϕ

 

4

 

 theory and QED and essentially
smaller than unity in QCD. Therefore, renormalon sin-
gularities can be self-consistently eliminated (up to
uncertainty of results). Moreover, it can be argued that

 

α

 

 = 1 in both 

 

ϕ

 

4

 

 theory and QED. Anyway, since 

 

β

 

(

 

g

 

)
is nonalternating in both theories, the condition for 
the absense of renormalon singularities in them is  iden- 
tical to the condition for their internal consistency.
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Exponential and logarithmic behavior can be included in these 
considerations and correspond to \alpha=\infty and \alpha=0.
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The only field theory in which the existence of renor-
malons is considered as firmly established is the O(n)-symmet-
ric sigma model in the limit of n      ∞ [53]. In this the-
ory, the single-loop  β function is exact,
and β(g) ∝ g2 at any g. Since α = 2,
renormalons cannot be eliminated self-consistently.
However, this theory is self-contradictory in the four-
dimensional case. It should be noted that truncation
of the series for \beta-function at any finite number of
terms immediately creates renormalon singularities.  
This shows that the renormalon problem cannot be 
solved in the framework of loop expansion [56, 57].

Note that possibilty of the existence of renormalon
singularities makes the functional integrals ill-defined.
The classical definition of the functional integral via
the perturbation theory is unsatisfactory because
of the divergence of the expansion in terms of the cou-
pling constant. Its constructive summation requires know-
ledge of  analyticity properties in the Borel plane (see
Section 6), which are uncertain untill it is establi-
shed whether the  renormalon singularities exist. The
definition of functional integral as a multidimensional
integral on a lattice also evokes doubts: a lattice theory
can be qualitatively different from the continuum the-
ory, because renormalon contributions correspond to
arbitrarily large momenta. This leads to a deadlock: an
analysis of functional integrals is required to solve the
renormalon problem, but the integrals remain ill
defined until the renormalon problem is solved. The
proposed scheme of self-consistent elimination of
renormalon singularities appears to be the only remedy.

In this scheme, a continuum theory, by definition,  is un-
derstood as the limit of lattice theories .12 

6. PRACTICAL SUMMATION
OF PERTURBATION SERIES

In this section, the practical summation of the fol-
lowing power series is discussed:

(6.1)

where the expansion coefficients have the asymptotic
form caNΓ(N + b) and their values are given numerically.
The present analysis is restricted to alternating series.
Accordingly, (–1)N is factored out, and a = –1/S0 > 0, as
in ϕ4 theory.

6.1. Conformal–Borel Technique 
and Other Methods 

Treating (6.1) as Borel’s sum (see Section 3),
consider the following modification of Borel trans-
formation (5.9):

(6.2)

where an arbitrary parameter b0 can be used to optimize
the summation procedure [35]. Borel transform B(z) is
assumed to have analyticity properties characteristic of
ϕ4 theory (see Section 5.2), i.e., it is analytic in the complex
z plane with a cut extending from –1/a to –∞ (see Fig.
8a). The series expansion of B(z) is convergent in the
circle |z | < 1/a. To calculate the integral in (6.2), B(z)
should be analytically continued.  When the expansion
coefficients   WN are given numerically, such continuation pre-
sents some problem. Its elegant solution proposed in [35] 
makes use of the conformal mapping z = f(u) of the plane with

12This philosophy is hidden in the very concept of renormalizabil-
ity. In fact, an effective theory is constructed for small momenta
with a cutoff parameter Λ, and the same scale is supposed to be
the upper boundary of the essential domain of integration. Renor-
malizability is understood as a possibility of taking the limit 
Λ  ∞ without destroying the structure of the theory. How-
ever, the actual contribution of momenta larger than Λ can
hardly be controlled within the scope of the effective theory.
One can always imagine some "demon" that lurks in the large- 
momentum region, providing its essential contribution and running 
away with increasing Λ. The physical realization of such a demon
was found in the theory of the Anderson transition: the role of a
demon is played by contribution of the minimum of action asso-
ciated with a lattice instanton [8, 36, 37]. 
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Fig. 8.  (a) Analiticity domain for Borel transform is  the com-
plex plane with the cut (–∞, –1/a); (b) it can be conformally
mapped to a unit circle. If analytic extension is restricted to
the positive half-axis, then (c) conformal mapping can be
performed to any domain such that u = 1 is its boundary
point nearest to the origin;  (d) an exreme case of such do-
main is the plane with the cut  (1, ∞).
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a cut to the unit circle |u | < 1 (see Fig. 8b). Reexpanding
B(z)  in powers of u,

(6.3)

gives a series,convergent at any z. Indeed, the singular po-
ints of B(z) (P, Q, R, …) lie on the cut, while their ima-
ges  (P, Q, Q', R, R', …) lie on the boundary of the circle
|u | = 1. Thus, the latter series in (6.3) is convergent at
|u | < 1. However, there is one-to-one correspondence
between the interior |u | < 1 of the circle and the domain
of analyticity in the z plane. The conformal mapping is
defined as

(6.4)

Hence,

(6.5)

where  denotes binomial coefficients.

Since the B(z) exhibits power-like behavior at infin-
ity, the Borel integral in (6.2) is rapidly convergent, and
its upper limit can be assigned a finite value in accor-
dance with the required accuracy. Then, u is bounded
from above by umax < 1, and the latter series in (6.3) is
convergent. The substitution of u = u(z) into the Borel
integral (6.2) followed by integration, as done in [35],
is somewhat risky, because permutation of summation
and    integration  may  lead  to  divergence  of   the 
algorithm.  In fact, the scheme used in [35] is
convergent, because the actual coefficients UN exhibit
power-like asymptotic behavior (see [65, Section 2.1]).13

As b0 increases, oscillatory asymptotic behavior
changes to monotonic [65], and this change was used in
[35] as a basis for error estimation.

When the first Nm coefficients in series (6.1) are
known, formula (6.5) can be used to find the first Nm

coefficients of the convergent series in (6.3). If g ~ 1,
then the dominant contribution corresponds to values of
u  of the order a few tenths,   which  makes it possible

13To determine the asymptotic form of UN , the contributions found
in [65] should be summed over all singular points, whose number is
infinite. Since the sum is finite for any constant N = N0, it can
readily be shown that it is dominated by the term containing the
highest power of N as N  ∞.
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to obtain accurate results even for small Nm . The sum-
mation error is estimated as

(6.6)

Therefore, the highest value of g for which satisfactory

results can be obtained is of the order        . The
described scheme was used [35] to calculate critical 
exponents in theory of phase transitions up to the 
third decimal place.

An alternative method of analytic continuation [66] con-
sists in construction of the Padé approximants [M/L], defined
as the ratio PM(z)/QL(z) of polynomials of degrees M
and L, with the coefficients adjusted to reproduce for  B(z)
its   expansion    (6.3)  in  the  several  lowest   orders.
Diagonal and quasi-diagonal approximants (with M = L
and M ≈ L, respectively) are known to converge to the
approximated function as M  ∞ for a broad class of
functions, but the convergence rate is relatively low in
the general case. When both M and L are finite, the
approximate Borel transform generally exhibits incor-
rect behavior at infinity dictated by the particular Padé
approximant [M/L] employed. The corresponding
incorrect behavior of W(g) at g  ∞ gives rise to a
certain error at g ~ 1 by continuity. Accordingly, differ-
ent results are obtained by using different approxi-
mants, depending on the subjective choice of the user.
The uniform convergence with respect to g can be achieved
by matching the behavior of Padé approximant at infinity
with the asymptotic form of B(z), if the asymptotic
behavior of W(g) in the strong-coupling limit is known.
When the number of terms in the expansion is suffi-
ciently large, the asymptotic behavior at strong cou-
pling can be “probed” by analyzing the convergence
rate, as done in [66]. Furthermore, information on the
nature of singularity at –1/a can be taken into account,
and  the approximation may be resticted by requiring that 
all poles of Padé approximants lie on the negative half-
axis; then the information used in this method is  the 
same as in the conformal–Borel technique described
above. The results of the original calculations of critical
exponents performed by this method in [66] were virtu-
ally identical with those obtained in [35]. The Padé–
Borel technique is preferably to be used when the analy-
ticity properties of B(z) are not known: then information
about the locations of the nearest singularities can be
gained by constructing Padé approximants.

In multiple-charge models, Chisholm approximants
(rational functions in many variables) can be used
instead of Padé approximants [67]. A more efficient
approach to problems of this type is based on the so-
called resolvent expansion [68]: all charges are multi-
plied by an auxiliary parameter λ, Padé approximants
in terms of this parameter are employed, and λ is set to
unity at the end of the calculations. In this method, the
symmetry of the model is completely preserved, and
projection onto any charge subspace of lower dimen-

δW g( ) 3 Nm
2 /ag( )1/3

–{ }, ag � Nm
2 .exp∝

Nm
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sion does not lead to loss of information [69, 70]. A
more complicated sequence of approximants can be
constructed by using Winn’s �-algorithm [71] based on
a “strong” Borel transform (see Section 7). The Som-
merfeld–Watson summation scheme [13] makes use of
the analyticity properties of the coefficient functions, inst- 
ead of Borel transforms. A generalized conformal–Borel 
technique was employed in [12]. The last two meth-
ods make it possible to “guess” the strong-coupling asym-
ptotics, analyzed systematically in the next section.

In another approach, variational perturbation theory
[72, 73] is used to formulate a scheme of interpolation
between the weak- and strong-coupling regions when
some information about the latter is available. With
regard to critical exponents, this information concerns
behavior near the renormalization-group fixed point and
can be expressed in terms of strong coupling in result
of expansion in the bare charge. Thus, a divergent pertur-
bation series is transformed into a convergent sequence
of approximations, and an accuracy comparable to that
of conformal–Borel technique is achieved [74]. Unfor-
tunately, neither divergence of the series nor the Li-
patov asymptotics is used in this approach explicitly.
Information about the latter can be used only implicitly
by interpolating the coefficient function. Since an
attempt of this kind made in [75] did not result in any
improvement in accuracy, Kleinert claimed that infor-
mation about high-order terms is insignificant. It is
obvious that such assertion is incorrect in the general
case: since exact knowledge of the expansion coeffi-
cients is equivalent to exact knowledge of the function,
appropriate use of any additional information should
improve accuracy. The particular result obtained by
Kleinert is simply related to the fact that variational 
interpolation is not less accurate than interpolation of 
the coefficient function.

The application of divergent series to calculation of
critical exponents is based on the use of the Callan–
Symanzik renormalization-group equation, which con-
tains both Gell-Mann–Low function β(g) and renor-
malization-group functions η(g) and η4(g) (anomalous
dimensions) [36, 76, 77]. If g* is a nontrivial zero of
β(g), then the critical exponents η and ν can be
expressed in terms of the anomalous dimensions at that
point by the relations η(g*) = η and η4(g*) = 1/ν – 2 +
η, and the remaining exponents are determined by well-
known relations [39]. The renormalization-group func-
tions are calculated as series expansions in terms of g,
which can be summed by methods mentioned above.

Based on this approach, substantial progress has
been made in analysis of critical behavior of a various
systems. The critical exponents for the O(n)-symmetric
ϕ4 theories with n = 0, 1, 2, and 3 were originally cal-
culated in [35, 66] for two- and three-dimensional
spaces by using six- and four-loop expansions, respec-
tively. Subsequently, these calculations were extended
to larger n and higher order coupling constants [78, 79].
In particular, this provided a basis for estimating the

computational scope of the 1/n expansion. The seven-loop
contributions to the renormalization-group functions for
 d = 3 in [75, 80] and five-loop ones for d = 2 in [81, 82]
were found and used to refine the critical exponents. The 
latter studies revealed systematic deviation of the resumma-
tion results from the known exact values of critical
exponents. However, their interpretation as a manifes-
tation of nonanalytic contributions to renormalization-
group functions (see [81, 82]) does not seem to be well
grounded.

When cubic anisotropy is taken into account, a two-
charge version of the n-component ϕ4 theory is
obtained, since the corresponding action contains two
fourth-order invariants. The cases of n = 3 and n = 0
correspond to a cubic crystals and weakly disordered
Ising ferromagnets, respectively. This can be shown by
using the standard replica trick to average over the ran-
dom impurity field [83]. The expansion coefficients and
sums of renormalization-group series were calculated
for these systems in the four-, five-, and six-loop
approximations in [69, 84], [85], and [86, 87], respec-
tively (see also [88, 89]).

Six-loop expansions have also been obtained for
other two-charge field systems: the mn model describ-
ing certain magnetic and structural phase transitions
(including the critical behavior of n-component disor-
dered magnets in the case of m = 0 [87]) and the O(m) ×
O(n)-symmetric model corresponding to the so-called
chiral phase transitions [90]. The summation of the
resulting series performed in [90–93] made it possible
to elucidate the structure of the phase portraits of the
renormalization-group equations and analyze the sta-
bility of nontrivial fixed points. Even more complicated
(three-charge) versions of ϕ4 theory arise in models of
superconductors with nontrivial pairing, many-sublat-
tice antiferromagnets, structural phase transitions,
superfluid transition in neutron liquid, etc. Some of
these have been analyzed in three-, four-, and six-loop
approximations in [70, 94–96]. In recent studies, five-
loop expansions were found and resummed for the two-
dimensional chiral [97], cubic, and mn models [82].
Finally, summation of three- and four-loop expansions
was used to analyze critical dynamics in pure and dis-
ordered Ising models [98, 99], as well as effects due to
long-range interactions [100] and violation of replica
symmetry [101].

Note that, instead of summing a series expansion in
terms of the coupling constant in the space of physical
dimension, one can sum up the divergent �-expansions
obtained for the formal problem of phase transition in
the (4 – �)-dimensional space [77, 102, 103]. The four-
loop expansions for the O(n)-symmetric theory [104]
summed up in [105] were extended to the five-loop
level [106] and summed in [80]. The five-loop expan-
sions obtained in [107] for the cubic model were used

in [108] as a basis for deriving five-loop -expan-
sions of critical exponents for disordered Ising model,
and their summation was discussed in [108–110].

�
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Detailed discussion  of the current status of theory
of critical phenomena based on multiple-loop renor-
malization-group expansions, as well as extensive bib-
liography, can be found in recent reviews [89, 96, 111].

6.2. Summation in the Strong-Coupling Limit 

The results obtained for increasingly stronger cou-
pling are characterized by stronger dependence on the
particular implementation of the summation procedure.
To analyse the unsuing uncertainties, it is desirable to find
the direct relation of asymptotic behavior of W(g) for 
the strong  coupling with the  values  of  WN . This prob-
lem is solved here by assuming that the asymptotic
behavior can be represented by the power law

(6.7)

which adequately represents all models that are amena-
ble to analysis and close to  realistic field-theoretical
problems. This problem can be solved in the framework 
of the standard conformal–Borel technique (Sec.6.1)
[65]. However, a more efficient algorithm can be de- 
veloped by using a modified conformal mapping.

If z = 0 and ∞ are mapped to u = 0 and 1, respec-
tively, then (6.4) is the only conformal mapping that
can be used to find the analytic continuation of the
Borel transform to arbitrary complex z. However, this is
not necessary: the integral in (6.2) can be calculated if
the analytic continuation to the positive half-axis is
found. Therefore, it is possible to use a conformal
mapping to any region for which u = 1 is the boundary
point nearest to the origin (see Fig. 8c): under this con-
dition, the latter series in (6.3) will be convergent if |u | <
1, and, in particular, on the interval 0 < u < 1, which is
the image of the positive half-axis.

One advantage of this conformal mapping is that the
divergence of the re-expanded series in (6.3) is con-
trolled by the nearest singular point u = 1, which is
related to the singularity of W(g) at g  ∞, so that the
asymptotic form of UN is relared with the parameters of
asymptotic formula (6.7). If UN is expressed in terms of
B(u) as

(6.8)

and the contour C enclosing point u = 0 is deformed so
that it goes around the cuts extending from the singular
points to infinity, then it can easily be shown that the
asymptotic form of UN for large N is controlled by the
nearest singular point u = 1. To reduce the contributions
of the remaining singular points P, Q, Q', …, these points
should be moved away as far as possible. As a result,

W g( ) W∞gα, g ∞,=

UN
ud

2πi
--------B u( )

uN 1+
------------,

C

∫°=

we come to the extremal form of such transform, which is
the mapping to the plane with the cut (1, ∞) (see Fig. 8d),

(6.9)

for which

(6.10)

The asymptotic form of UN for large N,

(6.11)

, (6.12)

is determined by the parameters of asymptotic for-
mula (6.7). Thus, a simple algorithm is proposed:
use (6.2) to calculate the coefficients BN corresponding
to    the    given     WN; substitute the results into (6.10) to
find UN; and find power-law fit (6.11) to determine the
parameters W∞ and α in (6.7).

In practical applications of the algorithm, one has to deal
with problems due to the growth of random errors The
random error in UN , corresponding to a relative compu-
tational or round-off error δ in WN , is a rapidly incre-
asing function of N:

(6.13)

In double-precision computations, when δ ~ 10–14, the
value of δUN is comparable to unity if N ≈ 45, and the
corresponding error in the recovered asymptotic for-
mula (6.7) is ~1%.

Fortunately, influence of smooth errors is essentially
different and the algorithm is "superstable" in the sense that the 
output error is even smaller than the input error. Linear  trans-
formation (6.10) has a remarkable property:

(6.14)

for m = 0, 1, …, N – 2. Accordingly, the addition of an
arbitrary polynomial Pm(K) to BK/aK (which behaves as
a power of K) does not change the asymptotic form of
UN . An analogous property is valid for a broad class
of smooth functions, which are accurately approxi-
mated by polynomials:    in  particular,  when    BK/aK

is replaced with BK/aK + f(K), where f(K) is an entire
function with rapidly decreasing Taylor series expan-
sion coefficients, the resulting change in UN is rapidly
decreasing with increasing N. In practical problems, sev-

z
u

a 1 u–( )
--------------------,=

U0 B0,=

UN

BK

aK
------ 1–( )KCN 1–

K 1– N 1≥( ).
K 1=

N

∑=

UN U∞Nα 1– , N ∞,=

U∞
W∞

aαΓ α( )Γ b0 α+( )
-------------------------------------------=

δUN δ 2N .⋅∼

Km 1–( )KCN 1–
K 1–

K 1=

N

∑ 0=
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eral low-order terms and asymptotic behavior of  WN

are known, while intermediate coefficients are found by
interpolation. Since interpolation leads to smooth
errors, they can be expected to play a minor role even if
their magnitudes are large. Thus, the proposed algo-
rithm is best suited to the most relevant formulation of
the problem.

The approximation of UN by a power law can be per-
formed by applying a standard χ2 minimization proce-
dure [112], and the fitting interval Nmin ≤ N ≤ Nmax can
be chosen as follows. The upper limit Nmax can be ta-
ken from the condition δUN ~ UN , since no additional
information is contained in the coefficients with high-
er N. This condition is not restrictive, because points with
large error  are automatically discarded in χ2 minimization.
The lower limit Nmin is set by requiring that χ2 have
“normal” values; it rules out the systematic error due to
deviation of UN from asymptotic law (6.11).

The existence of an upper bound for N entails strong
dependence of the results on b0 (see (6.2)), because this
parameter determines the rate at which the asymptotic
behavior is approached. To analyze this effect, suppose
that asymptotic formula (6.7) is modified by adding
power-law corrections:

. (6.15)

By analogy with (6.11) and (6.12), it follows that

(6.16)

When the corrections subsumed under the ellipsis
in (6.16) are neglected, the formal approximation
of (6.16) by power law (6.11) leads to satisfactory
results, because the log–log plot of (6.16) is almost lin-
ear; however, the values of α and U∞ thus obtained
should be interpreted as “effective” parameters.

Since the first and second terms in (6.16) vanish at
the poles of the respective gamma functions, UN ∝
Nα' − 1 and UN ∝ Nα – 1 are obtained for b0 = –α and b0 =
–α', respectively. The power-law fits are particularly ac-
curate for these b_0 and the values of χ2 are low. The
results expected by varying b0 are illustrated by Fig. 9.
The graph of χ2 has two sharp minima at b0 = –α and
b0 = –α'. The curve of αeff drops to α' in the neighbor-
hood of b0 = –α and approaches α outside this neigh-
borhood. At b0 = –α', the exact equality αeff = α is
reached and effective parameter U∞ exactly corre-
sponds to W∞ . In the neighborhood of b0 = –α, U∞ van-
ishes, while its linear slope

(6.17)

yields an estimate for W∞ weakly sensitive to errors in
α. The effect of the terms discarded in (6.16) only
slightly changes this pattern.

The analysis above suggests that independent esti-
mates for the exponent α can be obtained by using:
(1)the value of αeff at the right-hand minimum of χ2,
(2) the location of the left-hand minimum of χ2,
(3,4)  position  of  the  zero   for  the  function   U∞(b_0), which 
can be found from log-log plot (3), or by power-law fitting 
with a fixed α taken from previous estimates (4).

Similarly, independent estimates for W∞ are obtain-
ed by using :  (1) the value of  U ∞ at the right-hand minimum
of χ2, and  (2,3) the linear slope of U∞(b0) near its zero.  In the
latter estimate, the fixed value of α is used, which is varied with-
in its uncertanty (followed from the previous estimares) to
obtain upper and lower bounds for W∞ .

W g( ) W∞gα W∞' gα' W∞'' g
α''   +  … + +=

UN

W∞

aαΓ α( )Γ b0 α+( )
-------------------------------------------Nα 1–=

+
W∞'

aα'Γ α'( )Γ b0 α'+( )
---------------------------------------------Nα' 1–   +  … .
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eff , and U∞ plotted versus
b0 with neglecting the corrections subsumed under the ellipsis
in (6.16). Results obtained from log–log plots are 
frequently discontinuous (dashed curves) [65].



DIVERGENT PERTURBATION SERIES 1213

The accuracy of the results can be estimated by
using the fact that the discrepancies between different
estimates for α and W∞ are comparable to their respec-
tive deviations from the exact value.  Existence of several 
estimates makes the results more reliable: f.e. in
the case of two estimates they may become close by ac-
cidential reasons and provide underestimation of the 
error, while accidential proximity of three or four in- 
dependent estimates looks improbable.

As an example, consider the integral

(6.18)

which can be interpreted as the zero-dimensional ana-
log of the functional integral in ϕ4 theory. Its asymp-
totic behavior is described by (6.7) with α = –1/4 and
W∞ = Γ(1/4)/4, and the corrections can be represented
as a power series in g–1/2. The results obtained when WN

are given with double-precision accuracy (δ ~ 10–14)
are illusrated by Fig. 10.14 The ensuing estimates,

(6.19)

are in good agreement with the respective exact values

(6.20)

Stability of the algorithm with respect to interpolation
can be checked by writing the expansion coefficients
as15 

(6.21)

since relative corrections to the Lipatov asymptotics
have the form of a regular series expansion in
terms of 1/N. This representation can readily be used to
interpolate the coefficient function: the series can be
truncated, and the parameters AK can be found from cor-
respondence with several low-order coefficients WN .
When interpolation is performed by using parameters

14For technical reasons, the coefficients  = UNΓ(b0 + N0) are gi-
ven below, which are normalized to have a constant limit at
b0  ∞. Here, N0 is the lower limit of summation in (6.5),
which may differ from unity if the first terms in (6.1) vanish. Sim-

ilarly,  = U∞Γ(b0 + N0).
15Frequently arising questions concerning the analyticity of the

coefficient function and its interpolation were discussed in [113]
in the context of comments to [114].

W g( ) ϕ ϕ2– gϕ4–( ),expd

0

∞

∫=

ŨN

Ũ∞

α 0.235– 0.025, W∞± 0.908 0.025,±= =

α' 0.75– 0.08,±=

α 0.25, W∞– 0.9064…,= =

α' 0.75.–=

WN caNΓ N b+( )=

× 1
A1

N
------

A2

N2
------ …

AK

NK
------- …+ + + + +

 
 
 

,

of the Lipatov asymptotics, the lowest order correction
A1/N, and the single coefficient W1 [65], the resulting
values α = –0.245 ± 0.027 and W∞ = 0.899 ± 0.014 are
almost equal to those in (6.20). The errors in these
results are still determined by round-off error, even
though the interpolation errors are greater by ten orders
of magnitude.

Another example is the calculation of the ground-
state energy E0(g) for anharmonic oscillator (1.1), which
can be reduced to one-dimensional ϕ4 theory. The parame-
ters of the power law asymptotics (6.7) obtained by using
the coefficients WN calculated in [6] up to δ ~ 10–12  [65],

(6.22)

agree with the exact values α = 0.3333… and W∞ =
0.6679… and demonstrate adequate estimation of errors.

The reliability of error estimation suggests a new 
approach to optimization of summation algorithms. On a
conceptual level, optimization is performed by introducing
a variation (characterized by a parameter λ)  into the sum-
mation procedure and then fixing this parameter from
the condition of the best convergence of the algorithm.

α 0.317 0.032, W∞± 0.74 0.14,±= =

0.50 1.0 1.5 b0
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9
logχ2
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αeff
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0.3
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~
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U∞
~

Fig. 10. Curves of χ2, αeff , and  calculated as functions
of b0 for integral (6.18) by using the interval 24 ≤ N ≤ 50.

Dashed curve represents (b0) in the neighborhood of its
zero obtained with fixed  α = –0.25.

Ũ∞

Ũ∞
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For example, series (6.1) can be raised to the power λ, 
and the summation algorithm can then be applied to 
the re-expanded series

(6.23)

which has analogous properties (except for a different
parameter c in the Lipatov asymptotic form [8]). Theo-
retically, series (6.23) is equivalent to (6.1),  and  the
value of any quantity Q obtained as a result of summa-
tion should be independent of λ. When the availa-
ble information about series (6.1)  is incomplete,   such 
dependence arises, but becomes weaker as the amount
of information increases. In the general case, conver-
gence is not uniform with respect to λ, and the approx-
imate value of Q is close to the exact one only within
some plateau-like region (see Fig. 11a), while the error 
rapidly increases away from it.  The plateau widens
and flattens with increase in available information (e.g.,
see [115]). It is clear that the best convergence is
achieved at the center of the plateau. However, the loca-

W g( )λ W̃0 W̃1g– W̃2g2 …–+=

+ c̃aNΓ N b+( ) g–( )N …,+

tion of a “center” may not be easy to determine, since
the plateau may be asymmetric or indistinct, its center
may move in the course of convergence, etc. Therefore,
the choice of λand  the optimal value of Q, is a largely
subjective one.

However, there exists an objective approach to opti-
mization. Note that the λ determines not only the
approximate value of Q, but also the error of its calcu-
lation. If the error is estimated correctly, then the exact
value Qexact should be consistent with the approximate
results corresponding to any λ (see Fig. 11b); i.e., spu-
rious dependence of Q on λ is ruled out. If this “ideal”
situation is attained, then optimization with respect to λ 
reduces to  minimization of error.

It is reasonable to perform optimization at the interpolation 
stage, because any uncertainty of results is ultimately due to
imprecise knowledge of the coefficients WN . If (6.21) is
rewritten as

(6.24)

and the interpolation is performed by truncating the

series and determining the coefficients , then the

interpolation procedure can be parameterized by  and

. Optimization with respect to  can be made theoreti-

cally [65], and  the  optimal           =  b – 1/2 corresponds
to the Lipatov asymptotic form parameterized as

caNNb – 1/2Γ(N + 1/2). Optimization with respect to 
was demonstrated in [65] on the example of anharmonic 
oscillator, where interpolation was performed with the use
of the first nine coefficients of the series. Coarse optimiza-

tion of χ2 as a function of  was performed for several

constant values of b0 having minima at  between –5.5
and – 5.0. This narrow interval determines the range of
interpolations consistent with the power-law asymp-
totic behavior of W(g). Next, a systematic procedure
was executed to find α and W∞ . The “ideal” situation
illustrated by Fig. 11b was obtained by widening the
error corridor for α by a factor of 1.3 and for W∞ by a
factor of 1.1, which is admissible since the error is esti-
mated up to order of magnitude. If the values of α and
W∞  are chosen  to be consistent with all data,  and  the 
one-sided error is minimized, the results are

(6.25)

and their deviation from the exact results is adequately
estimated by the respective errors.

If the available information concerning WN is sufficient to re-
cover the asymptotic behavior of W(g), then summing of series 

WN caN Nb̃Γ N b b̃–+( ) 1
Ã1

N Ñ–
--------------+





=

+
Ã2

N Ñ–( )2
--------------------- … ÃK

N Ñ–( )K
---------------------- …+ + +





ÃK

b̃

Ñ b̃

b̃

Ñ

Ñ

Ñ

α 0.38 0.05, W∞± 0.52 0.12,±= =

(a)

(b)

Qexact

Qexact

Q

Q

1

3

1

2

2
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λopt λ

Fig. 11. (a) In theory, any quantity Q obtained by summa-
tion of a series is independent of the optimization parameter
λ. In practice, the dependence exists and changes from
curve 1 to curves 2 and 3 with increasing amount of avail-
able information. The optimal value of λ corresponds to the
central plateau region. (b) The error of approximate calcu-
lation of Q (hatched region) depends on λ. When the error
is estimated correctly, the exact value Qexact is consistent
with all data. In the “ideal” case illustrated here, the optimal
value of λ corresponds to the minimal error.
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(6.1) at arbitrary g presents no problem: calculating
the lowest order coefficients UN using (6.10), we
can continue them according  to the asympto-
tics   U∞Nα – 1; as a result, all coefficients in the conver-
gent series (6.3) are found. The summation error is
determined by the accuracy of determination of the
asymptotic form of UN , which is characterized by a
quantity ∆ assumed to be constant within a bounded
interval (in fact, the actual error behaves  logarithmi-
cally in N). If Nc is the characteristic scale for which the
relative error is of the order ∆ , then we can accept

(6.26)

and the summation error is

(6.27)

The error of a straightforward summation using Nm

known coefficients is given by (6.27) with Nc = Nm and
∆ ~ 1 and is higher than estimated by (6.6). Neverthe-
less, the stability of the algorithm with respect to inter-
polation ensures that ∆ � 1 and Nc � Nm even for small
Nm [65].

7. “NON-BOREL-SUMMABLE” SERIES

It is clear from Section 3 that  a  definition of the
sum of a factorially divergent series cannot be essential-
ly different from Borel’s definition, i.e. it should coin-
cide with Borel's definition or be equivalent to it.
Otherwise, self-consistent manipulation of diver-
gent series is impossible. Nevertheless, “non-Borel-
summable” series are frequently discussed in the liter-
ature. This misleading concept is used in two situations.

In one of these situations, the coefficients of the
series in question increase much faster than N!, and the
standard transform defined by (3.11) is not effective.
However, one can use the “strong” Borel transformation

(7.1)

δUN

UN

----------
0, N Nc,<
∆, N Nc,≥




=

δW g( )
W g( )

----------------
∆, ag � Nc,

∆ 2 Nc/ag( )1/2–{ }, ag � Nc.exp



∼

F g( ) FNgN

N 0=

∞

∑=

=  
FN

Γ kN 1+( )
------------------------- xxkNe x– gNd

0

∞

∫
N 0=

∞

∑

=  xe x– FN

Γ kN 1+( )
------------------------- gxk( )N

,
N 0=

∞

∑d

0

∞

∫

for summing series whose coefficients increase as
(N!)k with arbitrary finite k.16 

In the other situation, the factorial series in question
have nonalternating coefficients. Analysis of the simple
example

(7.2)

shows that the corresponding Borel image  B(z)  has the
singular points on the positive half-axis, which lie on the 
integration path in (3.12). Therefore, the Borel integral
is ill defined and should be correctly interpreted. In
particular, the contour of integration in (7.2) may lie
above or below the singular point x = 1/ag ,  or the
integral can be iunderstood in the sense of the principal
value.

To find all the set of the possible interpretations, let
rewrite definition of the gamma function in the form

(7.3)

where C1, C2, … are arbitrary contours extending from
the origin to infinity in the right half-plane. Then, the
Borel transformation leads to

(7.4)

where the contours Ci are not mutually equivalent
because of the singularities of the Borel transform B(z)
and cannot be aligned with the positive half-axis as can
be done in (7.3). The choice of interpretation is deter-
mined by the parameters γi if the set {Ci} contains all
nonequivalent contours.

Correct interpretation of the Borel integral is impos-
sible without additional information on the ma-
thematical object represented by a divergent series. For
this reason, current views on the prospects of recovering
physical quantities from the corresponding perturbative

16This leads one to the following question: why do we not use
“strong” transforms of this kind in every case whatsoever? As far
as exact calculations are concerned, the only criterion is analyti-
cal tractability: any transform is applicable if the required calcu-
lations can be carried through. In approximate calculations,
“strong” summation methods are not as desirable as they seem
to be. Mathematically, the nontriviality of a function is deter-
mined by the type and location of its singularities. Strong Borel
transform (7.1) defines an entire function B(z) having a compli-
cated singular point at infinity. This very fact entails practical dif-
ficulties: the singular point is hardly amenable to analysis,
whereas its impact is not any weaker. This explains why the
“weakest” Borel transform is preferable: its singularities lie at
finite points in the complex plane, and even their location pro-
vides essential information about the function (see Section 6).
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expansions are largely pessimistic (see [116, 117]).
However, the importance of additional information
should not be overestimated. In our opinion, interpretati-
on can be based on the principle of analyticity with
respect to model parameters, which is valid in 
practically all physical applications.

If the values of the parameters are such that all sin-
gular points zi of the Borel transform lie in the left half-
plane (see Fig. 12a), then Borel integral (3.12) for a fac-
torial series with asymptotic expansion coefficients
caNΓ(N + b) is the only analytic function that satisfies
the strong asymptotic condition within the sector
|argg | ≤ π, |g | < g0 with an arbitrary g0 (see [21, Sec-
tion 8.1]), i.e., on the entire physical sheet of the Rie-
mann surface. Therefore, the choice of a contour C
aligned with the positive half-axis (see Fig. 12a) is sure-
ly correct. Let the singular points of the  Borel  image
move to the positive half-axis as the parameters are 
varied, and “non-Borel-summable” situation is reach-
ed. If the analyticity with respect to parameters of the
model is to be preserved, then the moving singular
points should not cross the contour C. Therefore, the con-
tour should be deformed as shown in Fig. 12b. Accord-
ingly, correct interpretation of the Borel integral
requires that only one parameter γi in (7.4) is not zero.

Interpretation in the sense of the principal
value corresponds to the half-sum of integrals over con-
tours C ' and C ''. Its difference from the correct interpre-
tation is determined by the half-sum of the integrals
over contours Ci going around the singular points zi (see

Fig. 12c). The integral over a contour Ci behaves as
exp(–zi/g). When interpretation in the sense of the
 principal value is used, nonperturbative contributions of
 such form should be explicitely added to the Borel integral.
An expression of this kind was discussed in [118] with
regard to the quantum mechanical problem of double-
well potential.

Can one be sure that the same interpretation will be
obtained by analytic continuation of the Borel integral
with respect to different model parameters? This ques-
tion is nontrivial,  since it cannot be answered positively
in the case of analytic continuation with respect to the
coupling constant. Indeed, the action S{g, ϕ} (in ϕ4 and
related theories) can be transformed into S{φ}/g, and
the change g  geiψ is equivalent to S{φ} 
S{φ}e−iψ. Thus, the pattern of singularities of the Borel
transform in the complex plane is rotated by an angle ψ.
The singularities move from the positive half-axis into
the left half-plane if ψ > π/2, which is impossible if the
convergence of the functional integral is preserved.

In realistic field theories, the set of parameters is
strongly restricted. Due to translational invariance and
other symmetries  the  action can contain only the corres-
ponding invariants, while the renormalizability conditi-
on requires that only low powers of fields and their gradi-
ents should be included in the action. Since the coefficients 
of the highest powers of fields are generally associated
with the coupling constant, they are not amenable to
analytic continuation. The coefficients of the terms that
are quadratic in fields cannot be used either, because
their variation may lead to vacuum instability and corres-
ponding phase transitions. The remaining possibilities
include the coefficients of the intermediate powers of
fields (such as ϕ3 in ϕ4 theory) and the cross terms rep-
resenting interactions between different fields. Analyt-
icity with respect to these coefficients is preserved in
any part of the complex plane by virtue of (a) conver-
gence of the functional integrals defined on a finite-size
lattice; (b) possibility of taking infinite-volume limit
everywhere except for phase-transition points, because
the system can be partitioned into quasi-independent
subsystems owing to the finite correlation length; and
(c) possibility of elimination of ultraviolet cutoff due
to renormalizability. These considerations are illustrated
here by several examples.

7.1. Zero-Dimensional Model 

Consider the integral

(7.5)

as a zero-dimensional analog of the functional integral

W g( ) ϕ ϕ2– 2γ gϕ3– gϕ4–{ }expd
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Fig. 12. Graphic illustration of non-Borel-summability.
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in ϕ4 theories containing cubic terms. According
to [50], the singular points in the Borel plane corre-
spond to the extrema of the dimensionless action S{φ}:

(7.6)

If γ = 0, then there exist two saddle points with the

same  value  of   action , φ c = ±i/ , and there is a singularity
at z = S{φc} = –1/4  on the negative half-axis.  If 0 < γ <
γc , where γc = (8/9)1/2 ≈ 0.942, there exist two complex
conjugate  saddle  points. If γ > γ c , then these two points
lie on the positive half-axis (Fig. 13a), and situation beco- 
mes “non-Borel-summable.” When γ equals γc ,  another
minimum of S{φ} appears on the real axis.

When γ = 0, the contour C in (5.9) is aligned with the
positive half-axis. This choice of C can obviously be
retained for γ < γc (Fig. 13b). The configuration
obtained by making cuts from the singular points in
Fig. 13b to infinity along the rays emanating from the
origin can be considered as the quadrilateral A1A2A3A4
with vertices A2 and A4 at infinity, that can be mapped to
the unit circle by the Christoffel–Schwarz integral [51,
119] and then to the plane with a cut (Fig. 8d). The lat-
ter mapping is defined as

(7.7)

where 2πβ is the angle between the cuts 
and 1/a is the distance from the singular points to
the origin. Note that (6.4) and (6.9) are special cases
of (7.7) corresponding to β = 2 and β = 1. The coeffi-
cients UN of the resummed series in (6.3) are expressed
as

(7.8)

Their asymptotic form in the limit of N  ∞,

, (7.9)

determines values of parameters in the asymptotics of
W(g) in the strong-coupling limit. When 0 < γ < γc , the
pattern of minima of χ2 is analogous to that correspond-
ing to γ = 0 (see Fig. 10). The summation results
obtained for γ = 0.25 and 0.75 are presented in Tables 1
and 2, respectively. As in the case of γ = 0, the accuracy
of summation depends on the error of reconstructing
the asymptotics, which increases as γ approaches γc (cf.

S φc{ } 1
32
------ 27γ 4– 36γ 2 8– γ 9γ 2 8–( )3/2±+[ ].=

2

z p
u

1 u–( )β-------------------, p
ββ 1 β–( )1 β–

a
-------------------------------,= =

U0 B0,=

UN BK pK Γ N K– βK+( )
Γ N K– 1+( )Γ βK( )
-------------------------------------------------, N 0.≥

K 1=

N

∑=

UN U∞N 1– αβ+ , U∞
W∞

Γ αβ( )Γ α b0+( )
----------------------------------------= =

Tables 1 and 2). Indeed, the leading correction to (7.9)
has the order N−1 + α'β, and the actual large parameter in
the expansion is Nβ (since α – α' ~ 1).  This conclusi-
on  is confirmed  by an estimate  for summation error 
analogous to (6.27):

(7.10)
δW g( )
W g( )

----------------
∆, ag � Nc

β,

∆ 1 β+( ) 1 β–( )1 β– Nc
β/ag[ ]1/ 1 β+( )

–{ }, ag � Nc
β.exp




∼

Fig. 13. (a) Singularities in Borel plane for different γ in
integral (7.5). Contour of integration: (b) γ < γc; (c) γ > γc.
(d) Point A1 remains on the physical sheet of the Riemann
surface if the cut emanating from A3 is parabolic.
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The parameter Nβ decreases as γ  γc , since β  0
and the value of N cannot be increased indefinitely for
technical reasons. Thus, the algorithm formulated
above cannot be used to deal with the case of γ = γc ,
but there are no principal restrictions for approach-
ing this case arbitrarily closely.

To analyze   the  case   γ > γ c , the degeneracy of the
singular points at γ = γc is eliminated by adding a small
imaginary constant iδ to γ.       When  γ ≈ γ c , saddle-
point action (7.6) contains the singular contribution
(γ − γc)3/2. As γ increases, vertical displacement of the
singular points is followed by horizontal after the rota-
tion by an angle of 3π/2 is performed, and the contour C
folds (Fig. 13c).   If the cut  emanating from A 3 is

rotated so as to coincide with the positive half-axis,
point A1 appears on another sheet of the Riemann surface
and does not contribute to the divergence of the pertur-
bation series,  as  it  can be verified directly  by calculat-
ing the expansion coefficients. This agrees with the fact
that the formally calculated contribution of A1 to the
coefficients is purely imaginary. To hold the singular
point A1 on the physical sheet of the Riemann surface,
the cut emanating from A3 must be curved. If the cut is
parabolic (see Fig. 13d), the following constructive

algorithm can be used: the mapping w =  trans-
forms the domain in Fig. 13d into a plane with a straight
cut, which is mapped to a unit circle by the Christoffel–
Schwarz integral; then any desired domain (see Fig. 8c)
can be obtained.

7.2. Double-Well Potential 

Consider the ground state of a quantum particle in
the potential

(7.11)

which reduces to anharmonic oscillator (1.1) when γ =
0 and becomes a double-well potential with symmetric
minima when γ = 1. The latter model is of interest as a
typical  case  of  two  degenerate vacuums:   according 
to [116] the problems of this kind cannot be solved by
summation of perturbation series in principle.
Model (7.11) reduces to a one-dimensional field theory,
which has two comlex conjugate instantons for 0 < γ < 1, 
while the corresponding dimensionless action is

(7.12)

If m-instanton configurations are taken into account,
then the singularities of the Borel transform lie at the
points zm = –(2/3)m on the negative half-axis when γ =
0 and on two rays emanating from the origin when 0 <
γ < 1 (see Fig. 14a). In the latter case, the perturbation
series can be resummed by using the conformal map-
ping defined by (7.7). The value γ = 1 corresponds to
the critical case approached as β  0. This situation 
is unreachable in a rigorous sense, but there is no prin-
cipal restrictions  that forbids approaching it to an arbi-
trarily small distance. This can be done without using
perturbation series in terms of an arbitrary γ. It will suf-
fice to analyze the change in the Lipatov asymptotics
caused by a small deviation of γ from unity [43].

7.3. Yang–Mills Theory 

In the Yang–Mills theories, the Borel integral can be
interpreted by using a procedure that resembles analyt-
ical continuation with respect to the coupling between
fields, but preserves gauge invariance. This is facilitated

z A1–

U x( ) 1
2
---x2 γ gx3–

1
2
---gx4,+=

S φc{ } 2
3
---– γ 2 1

2
---γ γ 2 1–( ) 1 γ+

1 γ–
------------ln πi± .–+=

Table 1.  Sum of the series for integral (7.5) with γ = 0.25

g
W(g)

exact value resummed value

0.0625 1.718915 1.718915

0.125 1.674422 1.674422

0.25 1.604821 1.604821

0.50 1.508008 1.508008

1 1.387746 1.387745

2 1.252226 1.252220

4 1.110955 1.11093

8 0.972181 0.97212

32 0.722937 0.72272

g  ∞ 1.812g–0.25 1.835g–0.252

Table 2.  Sum of the series for integral (7.5) with γ = 0.75

g
W(g)

exact value resummed value

0.0625 1.902930 1.902928

0.125 1.937627 1.93755

0.25 1.903621 1.90300

0.50 1.787743 1.7851

1 1.615170 1.608

2 1.419861 1.406

4 1.226524 1.205

8 1.048303 1.020

32 0.753306 0.714

g  ∞ 1.812g–0.25 1.885g–0.275
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by invoking the results obtained in [18], where an

SU(2) Yang–Mills field  coupled to a complex scalar
field ϕ was considered,

(7.13)

with τa = σa/2 and σa denoting Pauli matrices. After
changing to new field variables, A  B/g, ϕ  φ/λ,
action (7.13) is represented as

(7.14)

where the last equality is written by introducing χ =
λ2/g2. In this theory, an arbitrary quantity Z(g2, λ2)
can be represented as a double series in powers of g2

and λ2,

(7.15)

with coefficients ZK, M determined by the saddle-point
configurations of functional (7.14) modified by adding
–Mlng2 and –K lnλ2. The saddle-point values of g2 and
λ2 are

(7.16)

while the saddle-point field configuration is given by

(7.17)

where  denotes ’t Hooft matrices, U is a constant
spinor (UU* = 1). The saddle-point action is expressed
as

(7.18)
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-------------------,≡+=

Z g2 λ2,( ) ZK M, g2Mλ2K ,
K M,
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gc
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M
-----------------, λc
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-------------------------,= =
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a x( ) 4ηµν

a xν
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----------------------------------------------,=

φ x( ) i χU
4 3
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--------------------------------------------------------,±=

ρ4 12χ 1,–=

ηµν
a

S Bc φc,{ } 16π2 2–
3 4ξ0sinh 4ξ0–( )

2 2ξ0sinh
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=  16π2χ 6 2ξ0cosh–( )e
2ξ0– 2ξ0 2ξ0cosh 2ξ0sinh–
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3
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e
2ξ0 ρ2,=

while the corresponding value of \chi is

(7.19)

If K and M in (7.15) are in  a constant ratio to  N,

(7.20)

then the asymptotic behavior of the expansion coeffi-

χ
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M
K
-----

S1 Bc φc,{ }
S0 Bc{ }

-------------------------= =
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---------------.=
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Fig. 14. (a) Singularities in the Borel plane corresponding
to different γ in potential (7.11). Interpretation of the Borel
integral in the Yang–Mills theory: (b) curve ABCDE in the
ξ0 plane defined by the condition Imf(ξ0) = 0 and (c) the

corresponding action Seff (in units of 16π2).

Seff
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cients is described by the formula

, (7.21)

where

(7.22)

and ξ0 is found by solving the second equation in (7.19)
rewritten by using (7.18) as

(7.23)

Equation (7.23) has a pair of complex conjugate solu-
tions, and the symbol Re in (7.21) is a result of  sum-
mation over these solutions. Figure 14b shows the
curve ABCDE defined by the condition Imf(ξ0) = 0. On
this curve, Ref(ξ0) varies from 1 to ∞ along segment
AB, from –∞ to 0 along BC, and from 0 to ∞ along CE.
Physical values of γ (0 ≤ γ ≤ 1) correspond to segments
AB and DE, where |Seff(ξ0)|/16π2 varies from 1/3 to 5.4
and from 4.2 to 1, respectively (see Fig. 14c). Asymp-
totic form (7.21) is determined by the saddle point with
the minimum value |Seff(ξ0)|, and the variation of γ from
1  to   0   corresponds  to  the  movement   along  the
trajectory AFF'E with a jump between points F and F',
which are associated with equal values of γ and
|Seff(ξ0)|. The jump in action (see Fig. 14c) can be elim-
inated by moving via complex values of γ defined by
relation (7.23) on the segment FF ' in the complex ξ0
plane (see Fig. 14b).

Point A corresponds to the value ρ2 = 1 for which the
Yang–Mills field vanishes (see (7.17)), and Seff(ξ0) cor-
responds to the saddle-point action in ϕ4 theory. On the
other hand, the parameter χ increases indefinitely at the
right endpoint of the curve (ξ0  ∞ + iπ/4), the field
ϕ vanishes accordingly, and Seff(ξ0) corresponds to the
value of action for an instanton–anti-instanton pair for
the pure Yang–Mills theory. If coefficients (7.21) for-
mally define the series

(7.24)

then γ can be varied to perform a continuous change
from the series for ϕ4 theory to the series for the Yang–
Mills theory and to monitor the evolution of the singu-
larities of the Borel transform at z = Seff(ξ0) and z =

ZK M, ZγN δN, N!Re Seff ξ0( )[ ] N–∝=

Seff ξ0( ) 16π2 2–
3 4ξ0sinh 4ξ0–( )

2 2ξ0sinh
2

-----------------------------------------+=

× e
4ξ0 1+
12

----------------- 
 

γ

,

f ξ0( ) e
2ξ0 2ξ0tanh=

×
2ξ0

1
3
--- 2ξ0sinh

2 1
2
--- 2ξ0 2ξ0coshsinh–+

2ξ0 2ξ0cosh 2ξ0sinh–
----------------------------------------------------------------------------------------- 1

γ
---.=

Z g̃2( ) ZγN δN, g̃N , g̃
N

∑ g2γ λ2δ,= =

(ξ0). If the m-instanton configurations are taken into
account, then the result is similar to that obtained for
the double-well potential (Fig. 14a). Therefore, the
summation of the series for the Yang–Mills theory
should make use of conformal mapping (7.7)  with a
sufficiently small parameter β.

8. GELL-MANN–LOW FUNCTIONS
IN BASIC FIELD THEORIES

This section presents a scheme for finding the Gell-
Mann–Low functions in basic field theories with arbi-
trary coupling constants (see Fig. 15).

8.1. ϕ4 Theory 

The first attempt to recover the Gell-Mann–Low
function in the four-dimensional scalar ϕ4 theory was
made in [11]. The analysis of the strong-coupling limit
presented in [12] predicted the asymptotic behavior
0.9g2, which differs from the one-loop result 1.5g2

valid for g  0 only by a numerical factor. Similar
asymptotic behavior, 1.06g1.9, was obtained in [13].
The variational perturbation theory developed in [120]
predicts 2.99g1.5. All of these results indicate that ϕ4

theory is internally inconsistent (or “trivial”), which con-
tradicts the absence of renormalon singularities estab-
lished in Section 5. An additional argument follows
from the fact that ϕ4 theory can be rigorously derived
from a reasonable model of a disordered system [103,
121–123], which is well defined in the continuum limit.

The Gell-Mann–Low function can be found by
means of the algorithm described in Section 6.2 with
β(g) playing the role of W(g) [65]. The input data used
here are the same as in [12]: the values of the first four
coefficients of the β function expansion in the subtrac-
tion scheme  [124, 125],

, (8.1)

and their high-order asymptotics  [7] with the first correc-
tion to it calculated in [126],

(8.2)

This asymptotic expression is determined by the expan-
sion coefficients for the invariant charge, which corre-
sponds here to the vertex with M = 4 (cf. (4.1.18)). The
“natural” normalization is used for charge g, with the
parameter a in (2.5) set equal to unity. In this case, the
nearest singular point of the Borel transform is sepa-

Seff*
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------g3–
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rated by unit distance from the origin, and the charac-
teristic scale of variation of β function is g ~ 1.

Interpolation was performed using (6.24) with  =
4 as an optimal value. Coarse optimization of χ2 as a

function of  was performed for several constant val-
ues of b0 [65] to determine the range of interpolations

(  between –0.5 and 0.5) consistent with the power-
law asymptotic behavior of W(g). Figure 16 shows the
behavior of UN for a nearly optimal interpolation with

 = 0. Since all curves except for those corresponding
to b0 � 1 and b0 ≈ –2 (whose approach to their asymp-
totica is dragged out)  tend to constants at large N,
the value of α is close to unity. This result agrees with
the value of αeff at the right-hand minimum of χ2, the
location of the left-hand minimum of χ2, and the behav-
ior of U∞ near its zero (see Fig. 17). Figure 18 illustrates

the dependence of the results on . The behavior of α
corresponding to the “ideal” situation shown in
Fig. 11b is obtained by widening the error corridor by a
factor of 2 (short-dashed curves in Fig. 18a). The result-
ing value α = 0.96 is consistent with all results obtained

b̃

Ñ

Ñ

Ñ

Ñ

for various . The “ideal” situation for W∞ is obtained
immediately (Fig. 18b), and the corresponding value
W∞ = 7.4 is consistent with all results. Thus,

(8.3)

A similar pattern is observed when  is varied
in (6.24) [65].

Figure 15a compares the β function obtained for g ≤
20 by series summation (solid curve) with results
obtained in [12, 13, 120] (upper, middle, and lower
dashed curves, respectively). The asymptotic form of
β(g) found in [12, 13] corresponds to the stable line

segment  ≈ 1.1N at N ≤ 10 in Fig. 16, which is inevitably
interpreted  as the true asymptotics if it is calculated by using 
only the known expansion coefficients. Actually, this segment 
is associated with a dip in the reduced coefficient function
\beta_N/\beta^as_N at N � 10 (see insert to Fig. 15a). This 
dip has also manifestation in the β function, resulting 
to its  one-loop behavior being extended17  to g ~ 10 [65].
Thus, the results obtained in [12, 13] reflect the actual

17Being more pronounced for the Borel transform, this behavior is
less obvious for the β function because of the integration in (6.2).

Ñ

α 0.96 0.01, W∞± 7.4 0.4.±= =
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Fig. 15. Gell-Mann–Low functions for (a) ϕ4 theory, (b) QED, and (c) QCD. (d) Effective coupling in QCD.
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properties of the β function and should not be consi-
dered as essentially incorrect (see detailed discussion
in [65, Section 8.3]). The variational perturbation the-
ory developed in [120] provides a somewhat better
description of the region of g � 10 in Fig. 15a, but does
not guarantee correct results in the strong-coupling
limit even theoretically.

The value of α obtained is close to unity. Even
though the deviation from unity exceeds the error, the
exact equality α = 1 cannot be ruled out, because
asymptotic expansion (6.7) may contain logarithmic
corrections,

(8.4)

which may be interpreted as a slight decrease in α if
γ > 0. In this case, expansion (6.11) contains the factor
(lnN)–γ, while U∞ does not change, and the resulting UN

can be fitted by using (8.4) with

(8.5)

W g( ) W∞gα gln( ) γ– , g ∞,=

α 1, γ 0.14, W∞ 7.7≈ ≈=

without any increase in χ2. Logarithmic branching
appears to be quite plausible for the following reasons.

1. Logarithmic branching is inevitable when the
exact equality α = 1 holds. Indeed, series (6.1) can be
represented as the Sommerfeld–Watson integral [7, 13]

(8.6)

where �(z) is the analytic continuation of WN to the
complex plane (�(N) = WN), C is a contour encom-
passing the points N0, N0 + 1, N0 + 2, …. When g is
large, the contour C can be extended and shifted left-
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Fig. 17. Pattern of χ2 minima obtained for ϕ4 theory by
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versus b0  for nearly optimal interpolation    = 0. Dashed
curve is U∞(b0) corresponding to fitting with fixed  α = 1.
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wards until the rightmost singular point of �(z)/sinπz
at z = α is reached. This singularity determines the
behavior of W(g) as g  ∞. Power law (6.7) and
asymptotic formula (8.4) correspond to the existence of
a simple pole at z = α and a singularity of the form
(z − α)γ – 1, respectively.

The term β0 in expansion (8.1) vanishes by defini-
tion. However, the zero value of the coefficient β1 is ac-
cidental: f.e. in the (4 – �)-dimensional ϕ4 theory, it 
has a finite value of the order �,  and �(1) ~ � accordingly.
As �  0,  the   four-dimensional   value �(1) = 0
is obtained, and there is no simple pole if α = 1. If zero
is approached according to the law �(z) = ω0(z – 1)γ,
then

(8.7)

and the positive value of γ has a natural explanation.
2. The class of  field theories with the  interaction ϕn

(generalizations of ϕ4 theory) was analyzed in [127] 
for space of dimension d = 2n/(n – 2), for which logarth-
mic situation takes place. In theories of this type, the coef-
ficient β1 vanishes, but becomes finite as d decreases.
Therefore, �(1) = 0 as shown above. The Gell-Mann–
Low function can be calculated exactly as n  ∞ [127],
and the rightmost singularity of �(z) has the form (z –
1)3/2, which corresponds to the asymptotic behavior
β(g) ∝ g(lng)–3/2. By continuity, nonanalyticity of the
type (z – 1)γ should hold for finite n, and the singular-
ity at z = 1 should remain rightmost. Therefore, asymp-
totic behavior (8.7) is natural for field theories of this
kind, and it is no surprise that it holds even for n = 4.
Note that W∞ is negative as n  ∞, and the Gell-
Mann–Low function has a zero. A similar conclusion
can be drawn for ϕ4 theory by straightforward extrapola-
tion to n = 4 [127]. Actually, one should have in mind in this 
extrapolation that the exponent γ varies from 3/2 to small 
values like (8.5). Accordingly, the asymptotics (8.7) ob- 
viously changes sign for γ = 1 due to gamma-function.
(ω0 is positive since �(2) ~ ω0 and β2 is positive [127]).

Thus, one has to choose between two possibilities:
power law (6.7) with α slightly below unity and
asymptotic expression (8.7) with γ > 0. In either case,
ϕ4 theory is self-consistent, which contradicts the wide-
spread view that ϕ4 theory is trivial. Let us discuss the
origin of this belief (for a more detailed discussion,
see [65, Section 8.4]).

It has been rigorously proved that ϕ4 theory is trivial
for d > 4 and nontrivial for d < 4 [128, 129]. The ine-
qualities obtained for d = 4 are “just a bit” insufficient
for proving triviality [130, Section 14]. For mathemati-
cians, it looks as an annoying minor problem, and the tri-
viality of ϕ4 theory is commonly regarded as “almost
proved.” For physicists, there is no reason to be so opti-
mistic about it: from the modern perspective, the afore-

β g( )
ω0

Γ 1 γ–( )
--------------------g gln( ) γ– , g ∞,=

mentioned results obtained for d ≠ 4 are nothing more
than elementary corollaries of renormalizability theory
and one-loop renormalization group. As for the situation
for  d = 4, it is  extremely complicated from viewpoint of
its physics, and no analytical approach to the problem 
has been found to this day.

It is generally believed that the triviality of ϕ4 theory is
convincingly demonstrated by numerical experiments on 
lattices. However, most of them reveal only a decrease in
the effective charge g(L) with increasing L, which is
quite natural because the β function has no zero,
whereas convincing evidence of “zero charge” can
hardly be obtained on any finite-size lattice. There is
considerable misunderstanding with regard to charge
normalization. Even under the “natural normalization”
used here, a one-loop quadratic law extends till g ~ 10. 
For the conventional normalizations, it holds on wider
intervals, for example, till g ~ 2000 when the interacti-
on term is written as gϕ4/4!. Accordingly, behavior
of any variable is impossible to distinguish from “triv-
ial” over a wide range of parameter values. The very
concept of triviality is frequently misunderstood. Many
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Fig. 18. Curves of α and W∞ obtained for ϕ4 theory: numbers
at curves correspond to numbering of estimates in Section 6.2; 
short-dashed curves illustrate the widening of the error corridor
for α by a factor of 2.
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authors identify it to the mean-field values of criti-
cal  exponents  in the four-dimensional theory  of phase 
transitions;  but this  indisputable fact is due to the 
mere absence of nontrivial zero of the β function.

Issues related to triviality were analyzed by Agodi,
Consoli, and others in a recent series of publications
(e.g., see [131, 132]). An unconventional scenario for
continuum limit in ϕ4 theory was proposed and claimed
to be logically consistent. The validity of the conven-
tional perturbation theory was basically denied, which
seems to be a premature conclusion. Since the numeri-
cal  lattice results, used as supportive evidence, were 
obtained  in the weak-coupling region,
they cannot provide any information about triviality.
The analyses presented in [131, 132] were performed to
resolve the difficulties arising in the Higgs sector of the
Standard Model in view of the triviality of ϕ4 theory.
No difficulties   of this kind arise when the theory is in-
ternally-consistent.

8.2. Quantum Electrodynamics 

In QED, four terms of the expansion of the β func-
tion are known in the MOM scheme [133]:

(8.8)

and the corresponding asymptotic expression is

(8.9)

It is identical, up to a constant factor, to the asymptotic
behavior of coefficients for the invariant charge [7],
which is determined by gD in QED, where  D is  the 
photon propagator (see (4.2.11) for M = 2 and L = 0).

The summation procedure for this  series should 
be modified in comparison with  Section 6,  because
the Lipatov asymptotic form is caNΓ(N/2 + b)   rather
than caNΓ(N + b).  The Borel transformation gives

(8.10)

where b0 is an arbitrary parameter. The conformal map-
ping z = u/(1 – u) is applied to obtain a convergent series

β g( ) 4
3
---g2 4g3 64

3
------ζ 3( ) 202

9
---------– g4+ +=

+ 186
256
3

---------ζ 3( ) 1280
3

------------ζ 5( )–+ g5 …,+

βN
as const 4.886× N– Γ N 12+

2
---------------- 

  , N ∞.=

β g( ) xe x– x
b0 1–

B ag x( ),d

0

∞

∫=

B z( ) BN z–( )N ,
N 0=

∞

∑=

BN

βN

aNΓ N /2 b0+( )
------------------------------------,=

in u for the Borel transform, with coefficients

(8.11)

whose behavior at large N,

, (8.12)

determines the parameters of the asymptotic expression
β(g) = β∞gα as g  ∞.

Interpolation was performed by using (6.24) with

 = b – 1/2 = 5.5 [65]. In contrast to ϕ4 theory, the con-
stant factor in (8.9) is not known. Technically, this is not
a problem, because the constant c can be factored into
the curly brackets in (6.24) to replace 1 with a parame-

ter  treated as unknown and determined by interpola-
tion. However, this leads to a much higher uncertainty

in  the  reduced  coefficient  function F N = βN/ : its
values F2 = 63.1, F3 = –7.02, F4 = 0.34, and F5 = 1.23
(measured in units of 10–3) exhibit only weak conver-

gence to a constant, and the predicted  = 

varies by orders of magnitude as a function of . Nev-
ertheless, the “superstability” of the algorithm men-
tioned above (see Section 6.2) suggests that reasonable
results can be obtained even in this situation. To verify
this possibility, a test experiment was performed for ϕ4

theory. The complete input data (including four coeffi-

cients β2, β3, β4, β5   and    parameters  and )
resulted in values   α = 0.96 ± 0.01 and β ∞ = 7.4 ± 0.4
(recall Section 8.1). Similar  procedure  performed

without using  and  resulted in α = 1.02 ± 0.03
and β∞ = 1.7 ± 0.3. Since the uncertainty in the coeffi-

cient function (estimated by varying  within unity
about its optimal value) is a few percent in the former
case and more than an order of magnitude in the latter,
this robustness of results is rather satisfactory.18 Of
course,  the results presented below should be consider-
ed as a zeroth approximation.

Coarse optimization of χ2 as a function of  was
performed to determine the range of interpolations

(−0.5 �  � 1.0) for which UN may exhibit power-law
behavior. The dependence of χ2 ,    U∞ and α on b0
illustrated by Fig. 19 implies that α ≈ 1. Indeed, U∞

18The shift in β∞ is not controlled by error estimation. This can
be  explained by the fact that the procedure of error estima-
tion validated in [65] is justified only when the discrepancy
with the exact result is sufficiently small and all deviations can 
be linearized.

UN BK 1–( )KCN 1–
K 1– N 1≥( ),

K 1=

N

∑=

U0 B0,=

UN U∞Nα 1– , U∞
β∞

aαΓ α( )Γ b0 α/2+( )
------------------------------------------------= =

b̃

Ã0

βN
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Ã0 FN
N ∞→
lim

Ñ

Ã0 Ã1

Ã0 Ã1

Ñ

Ñ
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changes sign when β0 = –α/2 ≈ –0.5 (see (8.12)). The
same value of b0 corresponds to the minimum of χ2 due
to zero value of the leading contribution to the asymp-
totic U∞Nα – 1. The values of αeff corresponding to the
minima of χ2 at b0 = –α'/2, –α''/2, …, where the corre-
sponding corrections to (8.12) vanish, are closest to the
exact value α ≈ 1.19 

Figures 20a and 20b show different estimates for α
and β∞ as functions of . The values of α obtained for

 ≤ 0.25 are consistent with a value slightly below unity.

The systematic growth to 1.08 observed at  > 0.25    is
not  controlled  by  error estimation, but the corre-
sponding minima of χ2 are weak and unstable. Similar
behavior is characteristic of β∞ . The results obtained

for the central part of the examined interval of  are

19Usually, only the minima of χ2 corresponding to α and α' (recall
Section 6.2) are observed in test examples. Additional minima

may appear when certain relations between the coefficients ,

, … are satisfied. Probably, this occurs in the cases with small

amount of available information. Such additional minima were also
observed in the test experiment for \phi^4 theory  described above.

W∞'

W∞''

Ñ

Ñ

Ñ

Ñ

accepted as more reliable, with a conservative error
estimate including systematic variations:

(8.13)

In view of the above remarks concerning errors, even
this estimate is somewhat unreliable.

Figure 15b shows the results obtained by summing

the series for  = 0.2 and b0 = 0. The one-loop law β2g2

is matched with the asymptotic β∞gα at g ~ 10. The dif-
ference between β(g) and the one-loop result is negligi-
ble at g < 5. The asymptotic β(g) agrees with the upper
bound in the inequality 0 ≤ β(g) < g, derived in [134]
from a spectral representations, within uncertainty. If
α = 1 and β∞ = 1, then the fine structure constant in pure
electrodynamics increases as L–2 in the small-length
limit.

Results obtained in lattice QED [135, 136] are diffe-
rently interpreted by specialists. Overall, these re-
sults point to the triviality in Wilson’s sense: the β func-
tion does not have a nontrivial zero, and phase transi-
tions are characterized by mean-field critical expo-
nents. This conclusion agrees with the results presented
above. 

α 1.0 0.1, β∞± 1.0 0.3.±= =

Ñ
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0.5 0 –0.5
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β∞
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1

Fig. 20. Curves of α and W∞ estimated for QED: numbers
at curves correspond to estimates in Section 6.2.
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Fig. 19. Pattern of χ2 minima and curves of αeff and 
versus b0 obtained for quantum electrodynamics by using
the interval 20 ≤ N ≤ 40 (notation as in Fig. 17).
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8.3. QCD 

In QCD, the first four terms of the expansion of the
Gell-Mann–Low function are known in the MS
scheme [137]:

(8.14)

(8.15)

where  is the coupling constant in QCD Lagrangian

β g( ) βNgN

N 0=

∞

∑– β2g2– β3g3– β4g4– …,–= =

g
g2

16π2
-----------,=

β2 11
2
3
---N f , β3– 102

38
3
------N f ,–= =

β4
2857

2
------------

5033
18

------------N f–
325
54
---------N f

2,+=

β5
149753

6
------------------ 3564ζ 3( )+=

– 1078361
162

---------------------
6508
27

------------ζ 3( )+ N f

+ 50065
162

---------------
6472
81

------------ζ 3( )+ N f
2 1093

729
------------N f

3,+

g

(4.5.7). The asymptotic form of the coefficients in
series (8.14) 

(8.16)

is determined by the expansion of the invariant charge,
which can be found by using any vertex in view of the
generalized Ward identities [47]. Formula (8.16) for
Nc = 2 and Nf = 0 agree with the result obtained in [17].

Since (8.14) is a nonalternating series, its summa-
tion should be performed by the method described in
Section 7. However, a simpler procedure [47] can be
applied by assuming that B(z) ~ zα at infinity. Irrespec-
tive of interpretation of Borel integral (7.4), the result is

(8.17)

where the exact relation between β∞ and  depends on

γi and Ci ,  but generally  β∞ ~  .   Consequently,
the summation of series (8.14) for negative g can be
used to determine the exponent α and estimate β∞ .

Interpolation of the coefficient function is per-

formed by using (6.24) with  = b – 1/2. As in QED,
the parameter c in the Lipatov asymptotic form is not
known. In Section 8.2, it was calculated in the course of
interpolation. In the present case, the results of an anal-
ogous procedure are characterized by considerable
uncertainties, which cannot be reduced by optimiza-
tion. For this reason, interpolation was performed for
a trial value of c which was varying 
between 10–5 and 1.20 The change in the results due to
this variation was negligible as compared to other
uncertainties. The results presented below were
obtained for Nc = 3, Nf = 0, and c = 10–5.

By finding a power-law fit for UN and analyzing χ2

as a function of  [47], it was found that the minimal

values of χ2 correspond to 0.5 �  � 2.0. Thus, the
range of interpolations consistent with the power-law
behavior of UN was determined. The typical curves of
χ2 and effective U∞ and α plotted versus b0 in Fig. 21
demonstrate that α ≈ –15. Indeed, U∞ changes sign
(see (6.12)) at b0 = –α ≈ 15.5, and the left-hand mini-
mum of χ2 is located at the same point. A similar esti-
mate, α ≈ –15, is obtained by using the value of αeff at

20The parameter c is estimated as the product of the squared

’t Hooft constant cH in one-instanton contribution (4.5.6) (  ~

10–5 and 10–4 for Nf = 0 and 3, respectively) with the dimension-
less integral of the instanton configuration. The latter factor is rel-
atively large (its characteristic scale is 16π2).

βN const Γ N 4Nc
11 Nc N f–( )

6
-----------------------------+ + 

 =

β g( ) β∞gα, g ∞,=

β g( ) β∞ g α, g ∞,–=
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Ñ
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Fig. 21. Curves of χ2, αeff , and  versus b0 obtained for
QCD. The minima at b0 = 15.4 and 15.9 are interpreted as
satellites moving with the main minimum at b0 = 15.5.

Ũ∞
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the right-hand minimum of χ2. The values of α esti-

mated by these methods agree only for  close to the

optimal value  = 1.58 (Fig. 21) and tend to disagree

as the difference between  and this value increases.

The resulting value of α cannot be accepted as final.
First, a large value of α may be indicative of exponen-
tial behavior. Second, since Γ(α) has poles at α = 0, –1,
–2, … (see (6.12)), the leading contribution to the
asymptotic behavior of UN may vanish, and the result
may correspond, for example, to α' in (6.15). For this

reason, the function W(g) = β(g) is introduced, and
the integer parameter ns is increased until the exponent
αW = α + ns becomes positive. The results obtained by
this method (Fig. 22a) demonstrate that the true behav-
ior is a power law with a large noninteger negative expo-
nent rather than an exponential  (if α = –n, the exponent
would behave as illustrated by the inset.) Each point in

Fig. 22a is obtained by independent optimization in .

The optimal  decreases monotonically with increas-
ing ns . The uncertainty of the results is primarily due to
their dependence on the lower limit of the averaging
interval Nmin ≤ N ≤ Nmax. The higher lying data points in
Fig. 22a correspond to small Nmin and minimum values
of χ2  of the order  106.   As   Nmin increases, α decreases
monotonically until χ2 reaches   values  of the order 
103 (lower lying data points). With a further increase in
Nmin, the pattern of χ2 minima becomes indistinct and
the uncertainty of the results sharply increases. The
value of α is then allowed to decrease further until χ2 ~
10 is reached as required, and this is taken into account

in error estimation. Even though the uncertainty in 
amounts to several orders of magnitude (Fig. 22b), the
value of the order 105 is consistent with most data and
looks to be most probable. Thus,

(8.18)

for Nf = 0. For Nf = 3, the result is α = –12 ± 3, and the

same most probable value is obtained  for (though it
is scattered between 1 and 107). The  consistency of re-
sults with different choice of summation procedure me-
ans that their uncertainty has been adequately estimated.

The large uncertainty in  corresponds to rela-
tively  small  uncertainty in  the β function  itself:
the    one-loop    law    β 2g2 is matched with asymp-

totic expression (8.17) at g* ~ 2, and  changes by
four orders of magnitude as g* changes by a factor of

two. When αW is negative, the sign of  is indetermi-
nate, because the error in α is large and the factor Γ(α)
in Eq. (6.12) is alternating, but this sign is definitely
negative for positive αW (large ns). Figure 15c illustrates

Ñ

Ñ

Ñ

g
ns

Ñ

Ñ

β∞

α 13– 2, β∞± 105.∼=

β∞

β∞

β∞

β∞

the behavior of β-function at g < 0 (solid curve). Its ana-
lytic continuation to positive g is expected to exhibit
qualitatively similar behavior, but the sign of (8.17)
may change (dashed curve).21 Nevertheless, the beha-
vior of the effective coupling as a function of the length
scale L (Fig. 15d) apears to be rather definite. In the one-
loop approximation, g(L) has a pole at L = L0 = 1/ΛQCD

(dashed curve). For the obtained β function, g(L)
increases in the neighborhood of L0 until a value of the
order  g* is reached (see Fig. 15c)  and  then either
becomes constant (if β∞ > 0) or nearly constant,
increasing as (lnL)0.07 (if β∞ < 0).

In the weak-coupling region, the quark–quark inter-
action potential V(L) is described by the modified Cou-

lomb law (L)/L, and the sharp increase in (L) in the
neighborhood of L = L0 points to a tendency to confine-
ment. In the strong-coupling region, the relation
between V(L) and (L) is not known. However, the

21In particular, β∞ = cosπα, if the Borel integral is interpreted in
the sense of the principal value.
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Fig. 22. (a) Exponent αW for QCD obtained by summation

of series for W(g) = β(g) versus ns for different intervals
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increased in unit steps. (b)  versus ns .

g
ns

β∞



1228

close in spirit result was obtained by Wilson [138] for
the lattice version of QCD:

(8.19)

where a is the lattice constant. Since the result should be
independent of a, the β function in the strong-coupling
region may be estimated as β(g) ~ glng [139], which is,
however, incorrect. The transverse size of the string
estimated for a � 1/ΛQCD is of the order  a,  which is
much larger than its actual physical size (~1/ΛQCD).
This means that lattice effects are rather strong and there 
is no reason to expect that the result  is  independent
of a. With regard to a � 1/ΛQCD , there is a reason to
these  expectations, but  Eq. (8.19) does not apply
since the coupling constant (a) is small. Thus,
Eq. (8.19) may be valid only for a ~ 1/ΛQCD. In the pla-

teau region, (L) ~  ~ 20, and the sharp
increase in (L) in the neighborhood of L = L0 (Fig. 15d)
implies that the conditions a ~ 1/ΛQCD and (a) � 1 are
compatible; probably, it is sufficient to justify applicabi-
lity of lattice formula (8.19)  to actual QCD.

9. HIGH-ORDER CORRECTIONS
TO THE LIPATOV ASYMPTOTICS

As noted above, corrections to Lipatov asymptotic
form (2.5) can be represented by a regular expansion in
terms of 1/N:

(9.1)

Knowledge of all coefficients AK is equivalent to knowl-
edge of the exact coefficient function WN , and their cal-
culation offers an alternative to direct calculation of
low-order diagrams [81, 106, 125, 133, 137]. Currently,
the lowest order corrections are known in ϕ4 theory
[126] and a number of quantum-mechanical problems
[6, 140].

It was shown in [141] that series (9.1) is factorially
divergent, and high-order expansion coefficients can be
calculated by using a procedure analogous to Lipatov’s
method: an exact expression for the Kth coefficient can
be written as a functional integral and found by the sad-
dle-point method for large K. Typically, AK has the
asymptotic form

(9.2)

where S0 and S1 are the values of action for the first and
second instantons in the field theory under analysis, and

V L( ) 3g2 a( )ln

a2
----------------------L, g a( ) � 1,=

g

g 2 16π2⋅
g

g

WN caNΓ N b+( )=

× 1
A1

N
------

A2

N2
------ …

AK

NK
------- …+ + + + +

 
 
 

.

AK c̃
S1

S0
-----ln 

  K–

Γ K
r' r–

2
-----------+ 

  ,=

r and r' denote the corresponding number of zero
modes. The instantons are enumerated in the order of
increasing of their action.

Detailed calculations of the asymptotic form of AK

for the n-component ϕ4 theory were presented in [33].
Available information about higher-lying instantons in
ϕ4 theory is incomplete. However, the most probable
candidate  for  the role  of  the second instanton is a 
combination  of  two  elementary   instantons [33,
142]. Then, expression (9.2) should be modified, beca-
use  it  is  correct only when  the equipartition law is
valid (see Section 4.1), i.e., when all fluctuational modes
can be distinctly divided to zero and oscillatory ones.
For two-instanton configurations, there always exist a
soft mode that corresponds to variation of the distance
between the elementary instantons and it can be reduced
to oscillation in a potential well with nonanalytic mini-
mum.  Accordingly,  logarithmic corrections appear in 
(9.2) if d = 1, 2, 3 and even the power law ones for d = 4.

If d = 1, then the asymptotic form of the coefficients
AK corresponding to the M-point Green function GM(g)
is

(9.3)

where CE is Euler’s constant and ψ(x) is the logarithmic
derivative of the gamma function. If d = 2, then

(9.4)

to logarithmic accuracy. Similarly,

(9.5)

for d = 3. The results obtained for d = 4 depend on the co-
ordinates entering to  the Green functions and have cumber-
some expressions [33]. They can be simplified by passing
to the momentum representation and choosing momenta
pi corresponding to the symmetric point (pi ~ p):

(9.6)
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where µ is a point of  the charge normalization,
ν = (n + 8)/3, and the values of B are
listed in Table 3. In the scalar theory (n = 1), the leading
contribution to the asymptotic expression vanishes, and
the asymptotic behavior is expected to be determined
by the next-order term in 1/K:

(9.7)

The results for the logarithm of the vacuum integral
Z0(g) are formally obtained by setting M = 0 and intro-
ducing a factor of 1/2 in (9.3)–(9.6). In particular, the
following result is obtained for the ground-state energy
of the anharmonic oscillator (d = 1, n = 1):

(9.8)

Figure 23 compares this prediction with numerical
results obtained in [6].

If d = 1, then the entire instanton spectrum can be
represented by combinations of elementary instantons.
If d ≥ 2, then there may exist a nonspherically symmet-
ric instanton with action lower than 2S0. In this case,
there are no soft modes, and formula (9.2) with r' – r =
d(d – 1)/2 is valid, because an asymmetric instanton is
associated with d(d – 1)/2 additional modes corre-
sponding to rotations in the coordinate space. Since
modes of this kind have never been considered, the cal-
culation of the constant  in (9.2) is a technically non-
trivial problem. The technique of integration over these
modes developed in [33] should be  instrumental in qu-
antum electrodynamics, where even the first instanton 
is asymmetric [23].

10. OUTLOOK

Finally, let us discuss the most promising lines of
further research.

10.1. Calculation of c
in the Lipatov Asymptotics 

Complete Lipatov asymptotic forms are known only
in ϕ4 theory and a number of quantum-mechanical
problems. In other models, the common factor c has yet
to be calculated. For the Gell-Mann–Low function in
QCD, the factor c has been calculated only in the case
of SU(2) symmetry [17].  However,  this calculation  is
based on unconventional definition of the β function,
and   consistency   of  the asymptotic form of  β N

with the renormalization schemes used in actual dia-
grammatic calculations remains an open question. The
factor c has been formally calculated for the quark–
quark correlation function in QCD [24]. However,

AK const eν µ/ p( )ln=

× Γ K
n 4+

2
------------ ν 1–+ + 

  2ln( ) K– .

AK
Kln 2.74+
3.78

--------------------------Γ K
1
2
---+ 

  2ln( ) K– .–=

c̃

the procedure used  to eliminate divergences in
(4.5.13) evokes doubts [48],  and even the general form 
of the result may be revised.

10.2. A Priori Proofs of Absence of Renormalons 

A proof  of   this  kind   exists  only  for  ϕ4  theory
[48]. The constructive scheme proposed in Section 5.3
for eliminating renormalon singularities in QED and
QCD is substantiated by results presented in Section 8.
However, it relies on approximate determination of the
Gell-Mann–Low function, which may seem question-
able to a skeptical reader. Therefore, extension of the
analysis presented in [48] to other field theories is
highly desirable.

20 4 6 8 10
K

2

4

6

8

log |AK|

Fig. 23. Predictions of asymptotic formula (9.8) (curve)
compared with coefficients AK calculated numerically in [6]
(symbols).

Table 3.  Parameter B in formula (9.6)

n
B × 104

M = 2 M = 4

0 –9.05 –8.72

1 0 0

2 3.25 1.45

3 4.55 1.50
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10.3. Development and Application 
of Highly Accurate Summation Methods 

In the conventional conformal–Borel technique pre-
sented in Section 6.1, the cut in the Borel plane extends
from –∞ to the nearest instanton singularity S0. How-
ever, the cut can be extended to point S* such that S0 <
S* < 0. In this case, all singularities of the Borel trans-
form remain on the boundary of a unit circle in the u
plane, and the resummed series is convergent at every
point in the Borel plane that does not lie on the cut. If
S0 < S* < 0, then the results are independent of S*. This
conclusion, empirically confirmed in [115], implies
that knowedge of exact value of S0  is  not  necessary.
Thus, the conformal-Borel technique [35] in fact does 
not use any quantitative information about  the Lipatov 
asymptotics. In our opinion, interpolation of the coeffi-
cient function and explicit use of the asymptotic beha-
vior at strong coupling (Sec.6.2) will substantially imp-
rove the accuracy of evaluation of critical exponents alre-
ady for available information. This example illustrates 
the inefficiency of the current use of information 
that requires enormous labor resources to be acquired.

Additional improvement of efficiency can be
achieved by using information concerning high-order
corrections to the Lipatov asymptotic form. The
scheme described in Section 9 facilitates the calculation
of several parameters characterizing the coefficient
function. In terms of efficiency, this is equivalent to
advancing by several orders in perturbation theory,
whereas advancement to the next order in diagram-
matic calculations requires about ten years.

The method for finding strong-coupling asymptotics
described in Section 6.2 is effective when information
is scarce, but cannot be classified as a highly accurate
one. When more information is available, construction
of Padé approximants for the coefficient function [13]
looks as a more effective tool. Preliminary studies show 
that this method can be combined with some strategy 
for selecting most suitable Padé approximants.

10.4. Summation of Nonalternating Series 

In essence, the analysis presented in Section 7
solves the problem of non-Borel-summability for the
most interesting problems. However, the summation
schemes formulated therein are insufficiently effective,
and improved methods should be developed.

The summation of QCD perturbation series is per-
formed in Section 8.3 without invoking the technique
developed in Section 7. A certain trick is used to cir-
cumvent  the  problem,  such  as  the exponent  α  is
correct, whereas β∞ is determined only up to an order of
magnitude. Currently, this rough approximation is
acceptable in view of large uncertainty in β∞ (see
Fig. 22b).  Nevertheless,  it is quite desirable to make 
attempt of the proper summation “by following all 
the rules” and to analyze the arising uncertainties.

In relation with the confinement problem, summation 
of series for anomalous dimensions is desirable. The for-
mation of a string -like “flux tube” between quarks is
not controlled by the β function, being determined by
properties of correlation functions, which depend on
the values of anomalous dimensions in the “plateau”
region of the coupling constant (see Fig 15d).

10.5. Analytical Methods
for Strong-Coupling Problems 

The exponent α is close to unity in both QED and ϕ4

theory. Moreover, there are reasons to believe that its
exact value is α = 1. Simple results of this kind should be
obtainable by analytical methods. Since it is always easier to 
substantiate a known result than  to obtain it a priory, there
are grounds for an optimistic outlook. Once the equality
α = 1 is proved, the accuracy of analysis of strong-cou-
pling asymptotics will substantially improve, because
the number of parameters to be determined will reduce
from two to one. It is obvious that progress in this area
will be stimulated by acquiring additional “experimen-
tal” information concerning strong-coupling asymp-
totica.

10.6. Applications to the Theory
of Disordered Systems 

The theory of disordered systems is unique in that
high-order contributions are essential even in the weak-
coupling region. Description of a particle moving in a
Gaussian random field can be rigorously reformulated
as a ϕ4 theory with “incorrect” sign of the coupling con-
stant [103, 121–123]. In formally unstable field theo-
ries of this kind, nonperturbative contributions of the
form exp(–a/g) play an important role and can be found
by summing perturbation series. One example is the
fluctuation tail of density of states [143], which is
directly related to the Lipatov asymptotic form [8, 144].
Combination of instanton calculations with parquet
approximation was used in [8] to develop a complete 
theory of density of states for a disordered system in 
the (4 – �)-dimensional space. Next in order is the devel-
opment of an analogous theory for calculating transport
properties of disordered systems, which requires an analysis
of a ϕ4-type theory with two vector fields [122, 123]. The
qualitative importance of high-order perturbative con-
tributions for such an analysis is due to the purely non-
perturbative nature of the diffusion pole in the localized
phase [145, 146]. If all characteristics of the pole can be
elucidated in the framework of the instanton method,
then an explanation can be found for the “simple” crit-
ical exponents obtained in the symmetry-based
approach to the theory of the Anderson transition [147].
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